ЭПИЛЕПСИЯ и пароксизмальные состояния

2016 Tom 8 No3

ISSN 2077-8333 2016 Vol. 8 №3

www.epilepsia.su

© Коллектив авторов, 2016 ISSN 2077-8333

DOI: 10.17749/2077-8333.2016.8.3.045-051

НОВЫЕ ВОЗМОЖНОСТИ ТЕРАПИИ ТИКОЗНЫХ ГИПЕРКИНЕЗОВ С ИСПОЛЬЗОВАНИЕМ ПРЕПАРАТОВ АНТИКОНВУЛЬСАНТНОГО РЯДА

Зыков В. П.1, Каширина Э. А.2, Наугольных Ю. В.2

1 ГБОУ ДПО «Российская медицинская академия последипломного образования» Минздрава России,

2 Детская городская поликлиника № 110, Москва

Резюме

Цель - оценить и сравнить клиническую эффективность топирамата и леветирацетама при лечении тикозных расстройств. Материалы и методы. У 17 пациентов с тиками в возрасте от 10 до 17 лет оценивалась эффективность топирамата в дозах 1-2 мг/кг и леветирацетама в дозе до 30 мг/кг. Клиническая оценка тяжести гиперкинезов и показатели поверхностной электромиографии (ЭМГ) фиксировались до приема препарата и на фоне лечения через шесть недель. Тяжесть клинической картины оценивали по Международной Йельской шкале (1989). В контрольную группу вошли 15 здоровых детей, сопоставимых по полу и возрасту. Результаты. Применение топирамата и леветирацетама значимо уменьшало проявления гиперкинезов у пациентов с тиками, определяемых по Йельской шкале (р<0,05) оценки тяжести тиков, а также распространенность залповой активности по ЭМГ при регистрации гиперкинезов с различных мышечных групп. Максимальный эффект был получен в группе пациентов, принимающих топирамат (p<0,05). <u>Заключение</u>. Проведенное исследование показало клиническую эффективность применения антиконвульсантов при лечении тиков у детей.

Ключевые слова

Тики, Йельская шкала оценки тяжести тиков, поверхностная электромиография, топирамат, леветирацетам.

Статья поступила: 26.04.2016 г.; в доработанном виде: 22.06.2016 г.; принята к печати: 12.09.2016 г.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении данной публикации.

Все авторы сделали эквивалентный вклад в подготовку публикации.

Для цитирования

Зыков В. П., Каширина Э. А., Наугольных Ю. В. Новые возможности терапии тикозных гиперкинезов с использованием препаратов антиконвульсантного ряда. Эпилепсия и пароксизмальные состояния. 2016; 3: 45-51.

POSSIBILITIES OF TIC HYPERKINESIA THERAPY USING ANTICONVULSANTS

Zykov V. P.1, Kashirina E. A.2, Naugolnykh Yu. V.2

- ¹ Russian Medical Academy of Postgraduate Education, Moscow
- ² City Children's polyclinic № 110, Moscow

Summary

<u>Objective</u>: to evaluate and compare the clinical efficacy of topiramate and levetiracetam in the treatment of tic disorders. <u>Materials and methods</u>. We assessed the effectiveness of 1-2 mg/kg topiramate and up to 30 mg/kg levetiracetam in 17 tic patients aged 10 to 17 years old. Clinical evaluation of hyperkinesia severity and surface electromyography (EMG) were recorded before receiving the drug and later after 6 weeks of treatment. The clinical severity was assessed by Yale Global Tic Severity Scale (YGTSS, 1989). The control group consisted of 15 healthy children of comparable sex and age. <u>Results</u>. Topiramate and levetiracetam significantly reduced the hyperkinesia, tics severity according to Yale Scale (p<0.05), and the prevalence of firing activity on EMG when registering hyperkinesia from different muscle groups. The maximum effect was obtained in the topiramate treatment group (p<0.05). <u>Conclusion</u>. The study has shown the clinical efficacy of anticonvulsants in the treatment of tics in children.

Key words

Tics, Yale Global Tic Severity Scale, surface electromyography, topiramate, levetiracetam.

Received: 26.04.2016; in the revised form: 22.06.2016; accepted: 12.09.2016.

Conflict of interests

The authors declare about the absence of conflict of interest with respect to this publication.

All authors contributed equally to this article.

For citation

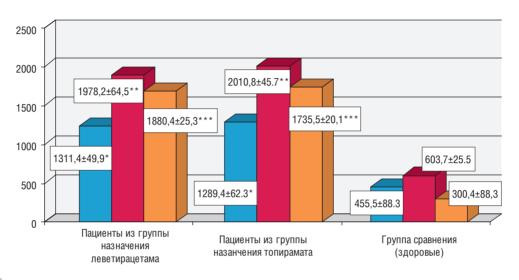
Zykov V.P., Kashirina E.A., Naugol'nykh Yu. V. New possibilities of tic hyperkinesia therapy using anticonvulsants. Epilepsiya I paroksizmal'nye sostoyaniya / Epilepsy and paroxysmal conditions. 2016; 3: 45-51 (in Russian).

Corresponding author

Address: ul. Barrikadnaya, 2/1, Moscow, Russia, 125993.

E-mail address: zykov_vp@mail.ru (Zykov V. P.).

Введение


Тики являются доминирующей формой гиперкинезов детского возраста. Распространенность их у детей достигает 6% [6,8], хронические формы диагностируются у 1% в популяции, сочетаются с нарушением обучения, тревогой, синдромом дефицита внимания [6,7,8]. Одним из наиболее сложных вопросов является изучение подходов к разработке медикаментозной терапии при тиках. В основе патогенеза тикозных расстройств лежат генетические нарушения нейротрасмиссии дофамина, серотонина, ацетилхолина, гамма-аминомасляной кислоты [6]. Существует целый ряд препаратов антиконвульсантного ряда (топирамат, леветирацетам), обладающих ГАМК-ергическим действием и оказывающих воздействие на патогенетические

механизмы возникновения тиков. В отечественной литературе мы практически не встретили публикаций, посвященных использованию антиконвульсантов для купирования тикозных гиперкинезов. Топирамат является активатором оборота биогенной аминокислоты ГАМК (g-аминомасляная кислота – GABA) – основного тормозного медиатора нейронной системы. Топирамат блокирует потенциалзависимые каналы проникновения ионов натрия и кальция, инактивируя тем самым два основных глутаматных рецептора – каинатный (аффинитетный к каинатной кислоте) и АМРА (аффинитетный к а-амино-3гидрокси-5-метил-4-изоксазол-пропионовой кислоте), отвечающих за процессы возбуждения в синаптической системе [2,4,11,13,17]. Леветирацетам – противоэпилептический препарат, механизм действия кото-

Оригинальные статьи

Группа пациентов	Показатели Йельской шкалы оценки тяжести тиков, баллы	Подсчет моторных тиков за 20 мин., количество	Подсчет вокальных тиков за 20 мин., количество
Пациенты из группы назначения леветирацетама, n=5	61,2±7,5	109,1±29,9	55,3±29,2
Пациенты из группы назначения топирамата, n=12	63,5±9,7	102,7±33,5	52,1±28,8

Таблица 1. Оценка клинических проявлений тиков по Йельской шкале и подсчету тиков за 20 мин.

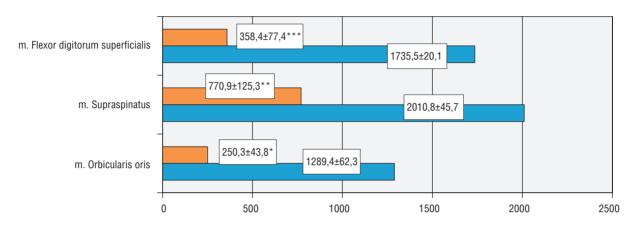
m. Orbicularis oris m. Supraspinatus

m. Flexor digitorum superficialis

Рисунок 1. Показатели амплитуды залповой активности с исследуемых мышечных групп у пациентов из группы назначения топирамата и леветирацетама (до приема препаратов) и в группе сравнения.

рого до конца не изучен. Исследования in vitro показали, что леветирацетам частично восстанавливает токи через GABA-зависимые каналы [4]. Один из предполагаемых механизмов основан на доказанном связывании с гликопротеином синаптических везикул SV2A, содержащемся в сером веществе головного и спинного мозга. Считается, что таким образом реализуется противосудорожный эффект, который выражен в противодействии гиперсинхронизации нейронной активности. Не изменяет нормальную нейротрансмиссию, однако подавляет эпилептиформные нейрональные вспышки, индуцированные GABAагонистом бикукулином, и возбуждение глютаматных рецепторов [4]. Другим механизмом действия леветирацетама является модуляция ГАМК-эргических и глициновых рецепторов, которые снижают возбудимость нейрона, причем ГАМК-эргическое взаимодействие является главным механизмом торможе-

ния в мозге, обеспечивающим лечебный эффект многих противоэпилептических препаратов. Тормозной эффект ГАМК осуществляется в значительной мере за счет активации притока ионов хлора внутрь нейрона, чем достигается эффект тормозной гиперполяризации [2]. Леветирацетам является единственным противоэпилептическим препаратом, который противодействует блокирующему притоку ионов хлора эффекту цинка и R-карболинов, тем самым восстанавливает приток хлоридов через ГАМК- и глициновые рецепторы и приводит к усилению торможения в нейронах [12,14]. Важной его клинической особенностью является минимум побочных эффектов и устойчивость терапевтического действия, что обеспечивает значительно больший процент долгосрочного удержания на препарате, чем у многих других противоэпилептических средств. Леветирацетам


^{*} p<0,001 – показатели амплитуды мышечного сокращения с регистрацией залповой активности между группами пациентов до лечения и группой сравнения с m. Orbicularis oris;

^{**} p<0,001 – показатели амплитуды мышечного сокращения с регистрацией залповой активности между группами пациентов до лечения и группой сравнения с m. Supraspinatus;

^{***} p<0,001 – показатели амплитуды мышечного сокращения с регистрацией залповой активности между группами пациентов до лечения и группой сравнения с т. Flexor digitorum superficialis.

Группа пациентов	Показатели Йельской шкалы оценки тяжести тиков до терапии, баллы	Показатели Йельской шка- лы оценки тяжести тиков после терапии, баллы	Уровень достоверности по- казателей Йельской шкалы до и после лечения
Пациенты из группы назначения леветирацетама, n=5	61,2±7,5	40,2±10,2*	* p<0,05
Пациенты из группы назна- чения топирамата, n=12	63,5±9,7	39,9±9,8**	** p<0,05

Таблица 2. Оценка клинических проявлений тиков по Йельской шкале в исследуемых группах до и после применения антиконвульсантной терапии.

показатели ЭМГ до лечения

■ показатели ЭМГ после лечения топираматом

Рисунок 2. Динамика показателей поверхностной электромиографии (амплитуда залповой активности, мкВ) с исследуемых мышечных групп до и после проведения терапии топираматом у детей с тиками.

 * p<0,001 — между показателями интерференционной пробы с провокацией гиперкинезов до и после лечения топираматом при записи с m. Orbicularis oris;

 ** p<0,05 — между показателями интерференционной пробы с провокацией гиперкинезов до и после лечения топираматом при записи с m. Supraspinatus;

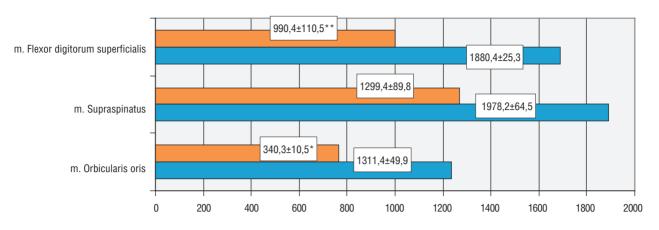
*** p<0,001 – между показателями интерференционной пробы с провокацией гиперкинезов до и после лечения топираматом при записи с m. Flexor digitorum superficialis.

практически не взаимодействует с другими лекарствами, что делает его предпочтительным при сочетанной терапии [14,15].

В отечественной диагностической практике используют методические приемы и способы анализа поверхностной ЭМГ, выработанной Ю.С. Юсевич [9]. Биоэлектрическая активность мышц при гиперкинезах с помощью метода поверхностной электромиографии (ЭМГ) изучалась рядом авторов, но такие публикации в литературных источниках встречаются редко. Исследовались клинико-электромиографические показатели у детей с гиперкинетической формой детского церебрального паралича [3]. Известны работы Г.Г. Шанько (1990) по регистрации залповой активности при записи ЭМГ при тиках у детей [1].

Формирование залповой активности осуществляется за счет потока импульсов от корково-подкорковых структур к спинальным мотонейронам Ю.С. Юсевич [10].

С помощью метода поверхностной электромиографии возможно объективно зарегистрировать ги-

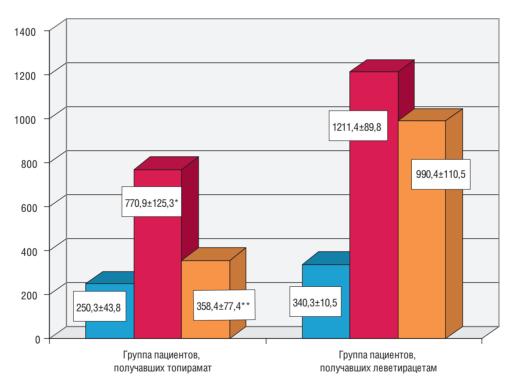

перкинезы в виде залповой активности у больных с тикозными гиперкинезами и сравнить влияние препаратов топирамат и леветирацетам на подавление залповой активности при тиках.

Цель исследования – оценить клиническую эффективность топирамата и леветирацетама у больных тиками.

Материалы и методы

Обследовано 17 пациентов с тикозными гиперкинезами в возрасте от 10 до 17 лет. Хронические моторновокальные тики были выявлены у 15 обследуемых, у двух пациентов — хронические моторные тики, у одного пациента был диагностирован синдром Туретта согласно критериям DSM — IY, а также рекомендациям The Tourette Syndrome Classification Stady Group (1993). Терапия топираматом была проведена у 12 пациентов, пять пациентов принимали препарат леветирацетам. Тяжесть клинической картины оценивали по Международной Йельской шкале с определением совокуп-

Оригинальные статьи


показатели ЭМГ до лечения

показатели ЭМГ после лечения леветирацетамом

Рисунок 3. Динамика показателей поверхностной электромиографии (амплитуда залповой активности, мкВ) с исследуемых мышечных групп до и после проведения терапии леветирацетамом у детей с тиками.

 * p<0,05 — между показателями интерференционной пробы с провокацией гиперкинезов до и после лечения леветирацетамом при записи с m. Orbicularis oris;

 ** p<0,05 — между показателями интерференционной пробы с провокацией гиперкинезов до и после лечения леветирацетамом при записи с m. Flexor digitorum superficialis.

m. Orbicularis oris

m. Supraspinatus

m. Flexor digitorum superficialis

Рисунок 4. Сравнительная характеристика показателей поверхностной ЭМГ (динамика амплитуды залповой активности, мкВ) на фоне применения топирамата и леветирацетама у детей с тикозными гиперкинезами.

* p<0,05 — показатели интерференционной пробы с провокацией гиперкинезов при записи с m. Supraspinatus между группами, получавшими топирамат и леветирацетам;

 ** p<0,05 — показатели интерференционной пробы с провокацией гиперкинезов при записи с m. Flexor digitorum superficialis между группами, получавшими топирамат и леветирацетам.

ной и суммарной тяжести тиков [16], а также с помошью подсчета тиков за 20 мин. [6]. В контрольную группу вошли 15 здоровых детей, сопоставимых с изучаемыми группами по полу и возрасту. Исследование тикозных гиперкинезов проводилась с помощью метода поверхностной электромиографии (ЭМГ) с мимических мышц (m. orbicularis oris), мышц плечевого пояса (m. supraspinatus), мышц верхних конечностей (m. flexor digitorum superficialis) по стандартной методике [5]. Запись интерференционной кривой осуществлялась в режиме покоя и при стимуляции гиперкинеза в мышцах плечевого пояса и мышцах верхних конечностей с помощью провокационных проб: проба с 10 сгибаниями-разгибаниями пальцев кисти [6]. За залповую активность принимали вспышки высокоамплитудной кривой более 500 мкВ.

Для коррекции тиков использовались препараты: топирамат в суточной дозе 1-2 мг/кг и леветирацетам в суточной дозе до 30 мг/кг, оказывающих влияние на механизм возникновения тикозных гиперкинезов. Показатели поверхностной ЭМГ фиксировались дважды: до приема препарата и на фоне лечения через шесть недель.

Результаты и их обсуждение

Тики у пациентов были представлены различными моторными и вокальными гиперкинезами. У всех обследуемых тикозные гиперкинезы имели длительное течение с периодами обострения и частичной ремиссии. Степень выраженности клинических проявлений, определяемая с помощью Йельской шкалы оценки тяжести тиков (суммарная тяжесть тиков + совокупное расстройство) и подсчета тиков за 20 мин., приведена в таблице 1.

Тикозные гиперкинезы регистрировались с помощью поверхностной электромиографии в виде залповой активности (вспышки высокоамплитудной кривой) в различных пробах. Динамика показателей амплитуды залповой активности (мкВ) при записи поверхностной электромиографии в интерференционной пробе с тонической нагрузкой (с провокацией гиперкинезов с мышц плечевого пояса и мышц верхних конечностей) у исследуемых пациентов представлена на рисунке 1. Залповая активность при записи поверхностной ЭМГ с исследуемых мышечных групп в интерференционной пробе в покое у обследуемых пациентов не регистрировалась.

Терапия антиконвульсантами способствовала значительному уменьшению клинических проявлений тикозных гиперкинезов, что отразилось в показателях Йельской шкалы оценки тяжести тиков (суммарная и совокупная тяжесть) (см. табл. 2).

Терапия топираматом привела к достоверному снижению амплитуды залповой активности во всех исследуемых мышечных группах у пациентов с тикозными гиперкинезами (см. рис. 2).

Назначение препарата леветирацетам также достоверно улучшило показатели поверхностной ЭМГ. Значимое уменьшение залповой активности было зарегистрировано в мимической мускулатуре и мышцах верхних конечностей (см. рис. 3).

Таким образом, антиконвульсанты оказали значимое воздействие на уменьшение клинических проявлений тикозных гиперкинезов, что было зарегистрировано с помощью поверхностной ЭМГ в виде достоверного уменьшения амплитуды залповой активности с исследуемых мышечных групп.

Максимальный эффект был получен в группе пациентов, принимавших топирамат (см. рис. 4).

Выводы:

- 1. Терапия антиконвульсантами способствовала значительному снижению клинических проявлений тикозных гиперкинезов, определяемых с помощью Йельской шкалы оценки тяжести тиков.
- 2. Анализ динамики показателей поверхностной ЭМГ выявил достоверное уменьшение амплитуды залповой активн ости у обследуемых пациентов после курса терапии антиконвульсантами.
- 3. Максимальный эффект был получен в группе пациентов, принимавших топирамат.
- 4. С помощью метода поверхностной ЭМГ возможно объективно зарегистрировать тики в виде записи высокоамплитудной кривой длительностью менее 100 мс.
- 5. Метод поверхностной ЭМГ возможно использовать в качестве контроля эффективности проводимой терапии.
- 6. Проведенное исследование показало клинические возможности применения препаратов антиконвульсантного ряда при лечении тиков у детей.

Литература:

- Антонов Й. П., Шанько Г. Г. Гиперкинезы у детей. Вопросы этиологии, патогенеза, лечения. Минск. 1975; 213 с.
- Белова Е. И. Основы нейрофармакологии.
 М. 2006; 176 с.
- Бурыгина А. Д., Андреева М. К., Кухнина Т. М., Богданова Л. А. Изменения клинико-электромиографических показателей у больных с гиперкинетической формой детского церебрального паралича и их динамика при комплексном санаторнокурортном лечении с включением транс-
- церебрального воздействия электрического поля ультравысокой частоты. Вопр. курортологии, физиотерапии и лечеб. физ. культуры. 1993; 5: 42-46.
- 4. Видаль, справочник лекарственных средств электронный справочник. 2012-2016; vidal.ru>drugs/baclosan__1616. Дата обрашения: 06.04.2016.
- Зенков Л.Р., Ронкин М.А. Функциональная диагностика нервных заболеваний. М. 2011: 488 с.
- Зыков В. П. Тики детского возраста. М. 2002: 163 с.
- Левин О. С. Тикозные гиперкинезы. Экстрапирамидные расстройства: руководство по лечению и диагностике. Под ред. В. Н. Штока, И. А. Ивановой-Смоленской. М. 2002; 313-325; 327-355.
- Шанько Г. Г. Генерализованный тик (болезнь Жилль де ля Туретта) у детей и подростков: методические рекомендации. Минск. 1990; 29 с.
- 9. Электромиография. Практикум по нервным болезням и нейрохирургии. nevroenc.ru/dop-metody...jelektromiografija. html. Дата обращения: 06.04.2016.

Оригинальные статьи

- 10. Юсевич Ю.С. Электромиография в клинике нервных болезней. М. 1958; 128.
- 11. Bamard E. A., Skolnick P., Olsen R. W. et al. International Union of Pharmacology. XV. Subtypes of gammaaminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 1998; 50 (2): 291-313.
- 12. Bushara K.O., Malik T., Exonder R.E. The effect of Levetiracetam on essential tremor. Neurology. 2005; 64: 1078-1080.
- 13. Costa E. From GABAA receptor diversity emerges a unified vision of GABA-ergic inhibition. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 321-350.
- 14. Dooley M., Plosker G.L. Levetiracetam. A review of its adjunctive use in the partial onself seizures. Drags. 2000; 60: 871-893.
- 15. Glass G.A., Stankiewics L., Mithoefer A. et al. Levetiracetam forseizures after liver transplantation. Neurology. 2005; 64: 1084-1085
- 16. Leckman M. A., Riddle M. T., Hardin S. I., Ort K.I., Swartz J. Stevenson The Yale Global Tic Severity Scale; initial testing of a clinical - rated scale of tic severity. Am Acad Child Adolesc Psychiatry, 1989; 28: 566-573
- 17. Yang C.S., Zhang L.N., Zeng L.N., Huang L., Liu Y. T. Topiramate for Tourette's syndrome in children a meta-analysis. Pediatr. Neurol. 2013 Nov; 49 (5).

References:

- Antonov I. P., Shan'ko G. G. Hyperkinesia in children. Questions of etiology, pathogenesis, treatment [Giperkinezy u detei. Voprosy etiologii, patogeneza, lecheniya (in Russian)]. Minsk. 1975; 213 s.
- 2. Belova E.I. Fundamentals of neuropharmacology [Osnovy neirofarmakologii (in Russian)]. Moscow. 2006; 176 s.
- Burygina A. D., Andreeva M. K., Kukhnina T. M., Bogdanova L. A. Vopr. kurortologii, fizioterapii i lecheb. fiz. kul'tury. 1993; 5: 42-46.
- Vidal, reference medicinal products electronic directory. vidal.ru>drugs/ baclosan__1616. Accessed: 06.04.2016.
- Zenkov L. R., Ronkin M. A. Functional diagnosis of nervous diseases [Funktsional'naya diagnostika nervnykh zabolevanii (in Russian)]. Moscow. 2011; 488 s.
- Zykov V. P. Childhood Tiki [Tiki detskogo vozrasta (in Russian)]. Moscow. 2002; 163 s.
- Levin O.S. Tic hyperkinesis. Extrapyramidal disorders: A guide to

- diagnosis and treatment. Ed. VN Stock, IA Ivanova-Smolenskaya [Tikoznye giperkinezy. Ekstrapiramidnye rasstroistva: Rukovodstvo po lecheniyu i diagnostike. Pod red. V. N. Shtoka, I. A. Ivanovoi-Smolenskoi (in Russian)]. Moscow. 2002; 313-325; 327-355.
- Shan'ko G. G. Generalized tick (disease Gilles de la Tourette's syndrome) in children and adolescents: guidelines [Generalizovannyi tik (bolezn' Zhill' de Iya Turetta) u detei i podrostkov: metodicheskie rekomendatsii (in Russian)]. Minsk. 1990; 29 s.
- Electromyography. Workshop on nervous diseases and neurosurgery. nevro-enc. ru>dop-metody...jelektromiografija.html. Accessed: 06.04.2016.
- 10. Yusevich Yu. S. Electromyography in the clinic of nervous diseases [Elektromiografiya v klinike nervnykh boleznei (in Russian)]. Moscow. 1958; 128.
- 11. Bamard E.A., Skolnick P., Olsen R.W. et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of

- subunit structure and receptor function. Pharmacol. Rev. 1998; 50 (2): 291-313.
- 12. Bushara K.O., Malik T., Exonder R.E. The effect of Levetiracetam on essential tremor. Neurology. 2005; 64: 1078-1080.
- 13. Costa E. From GABAA receptor diversity emerges a unified vision of GABA-ergic inhibition. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 321-350.
- 14. Dooley M., Plosker G.L. Levetiracetam. A review of its adjunctive use in the partial onself seizures. Drags. 2000; 60: 871-893.
- 15. Glass G. A., Stankiewics L., Mithoefer A. et al. Levetiracetam forseizures after liver transplantation. Neurology. 2005; 64: 1084-1085.
- 16. Leckman M. A., Riddle M. T., Hardin S. I., Ort K.I., Swartz J. Stevenson The Yale Global Tic Severity Scale; initial testing of a clinical – rated scale of tic severity. Am Acad Child Adolesc Psychiatry. 1989; 28: 566-573.
- 17. Yang C.S., Zhang L.N., Zeng L.N., Huang L., Liu Y. T. Topiramate for Tourette's syndrome in children a meta-analysis. Pediatr. Neurol. 2013 Nov; 49 (5).

Сведения об авторах:

Зыков Валерий Петрович – д.м.н., профессор, заведующий кафедрой неврологии детского возраста Российской академии последипломного образования. Адрес: ул Баррикадная, 2/1, Москва, Россия, 125995. Тел.: +7(495)4966212. E-mail: zvkov vp@mail.ru.

Каширина Эльмира Агасалимовна — главный врач ГБУЗ ДГП № 110. Адрес: ул. Декабристов 39, Москва, Россия, 127490. Тел.: +7(499)2049262. E-mail: dgp110@yandex.ru.

Наугольных Юлия Валерьевна – к.м.н., заведующая отделением неврологии ГБУЗ ДГП № 110. Адрес: ул. Декабристов 39, Москва, Россия, 127490. Тел.: +7(499)2010638. E-mail: julia-nv@mail.ru.

About the authors:

Zykov Valery Petrovich - MD, Professor, Head of Department of Pediatric Neurology, Russian Medical Academy of Postgraduate Education. Address: ul. Barrikadnaya 2/1, Moscow, Russia, 125995. Tel.: +7(495)4966212. E-mail: zykov_vp@mail.ru.

Kashirina Elmira Agasalimovna - Chief Physician of GBUZ MCP No. 110. Address: ul. Dekabristov 39, Moscow, Russia, 127490. Tel.: +7(499)2049262. E-mail: dgp110@yandex.ru.

Naugolnykh Yulia Valerievna – PhD., Head of the Department of Neurology of GBUZ MCP No. 110. Address: ul. Dekabristov 39, Moscow, Russia, 127490. Tel.: +7(499)2010638. E-mail: julia-nv@mail.ru.