ЭПИЛЕПСИЯ и пароксизмальные состояния

2020 Tom 12 **Nº**4

EPILEPSY AND PAROXYSMAL CONDITIONS 2020 Vol. 12 Nº4

www.epilepsia.su

https://doi.org/10.17749/2077-8333/epi.par.con.2020.041

ISSN 2077-8333 (print) ISSN 2311-4088 (online)

Особенности биоэлектрической активности головного мозга у взрослых пациентов с POLG-ассоциированными заболеваниями

Федин П.А.1, Нужный Е.П.1, Носкова Т.Ю.1, Селивёрстов Ю.А.1, Клюшников С.А.1, Крылова Т.Д.2, Цыганкова П.Г.2, Захарова Е.Ю.2, Иллариошкин С.Н.1

¹Федеральное государственное бюджетное научное учреждение «Научный центр неврологии» (Волоколамское ш., 80, Москва 125367, Россия)

²Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр им. академика Н.П. Бочкова» (ул. Москворечье, 1, Москва 115478, Россия)

Для контактов: Hyжный Евгений Петрович, e-mail: enuzhny@mail.ru

РЕЗЮМЕ

Введение. Эпилепсия является распространенным проявлением митохондриальных болезней, в том числе связанных с мутациями в гене POLG. Тем не менее электроэнцефалографические (ЭЭГ) особенности POLGассоциированных заболеваний у взрослых пациентов изучены недостаточно.

Цель: изучить особенности и характеристики ЭЭГ-картины у взрослых пациентов с POLG-ассоциированными заболеваниями.

Материал и методы. Обследованы 8 больных: 7 с синдромом SANDO (англ. Sensory Ataxic Neuropathy, Dysarthria, Ophthalmoparesis) и 1 с синдромом MEMSA (англ. Myoclonic Epilepsy Myopathy Sensory Ataxia); медиана возраста составила 32,5 года. Всем пациентам выполнена рутинная ЭЭГ на 19-канальном электроэнцефалографе по общепринятой методике.

Результаты. Эпилептические приступы наблюдались у 3 больных, у 2 – как первое проявление заболевания. У 6 пациентов в фоновой записи преобладала тета-активность в затылочных отделах, из них у 5 регистрировались билатерально-синхронные вспышки групп волн тета- и дельта-диапазона, более выраженные в лобноцентральных отделах; у 4 — преходящая нелатерализованная дельта-активность в затылочных и затылочнотеменных отделах. Открывание глаз приводило к депрессии ритмов и подавлению вспышек у всех больных. После ритмической фотостимуляции у 2 пациентов отмечены билатерально-синхронные вспышки групп тетаи дельта-волн, преобладающие в лобных отделах. При гипервентиляции у 3 больных наблюдались усиление дельта-активности в затылочных отделах, а также билатерально-синхронные вспышки групп дельта-волн. Эпилептиформная активность регистрировалась у 2 пациенток.

Заключение. Характерной ЭЭГ-картиной у взрослых пациентов с POLG-ассоциированными заболеваниями независимо от клинической картины являются замедление фоновой активности, наличие вспышек тета- и дельтаволн в задних отделах головного мозга, которые подавляются при открывании глаз.

КЛЮЧЕВЫЕ СЛОВА

Митохондриальные заболевания, ген POLG, синдром SANDO, синдром MEMSA, электроэнцефалография, эпилепсия.

Статья поступила: 21.09.2020 г.; в доработанном виде: 16.11.2020 г.; принята к печати: 25.12.2020 г.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении данной публикации.

Источник финансирования

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-015-00171.

Вклад авторов

Авторы сделали эквивалентный вклад в подготовку публикации.

Для цитирования

Федин П.А., Нужный Е.П., Носкова Т.Ю., Селивёрстов Ю.А., Клюшников С.А., Крылова Т.Д., Цыганкова П.Г., Захарова Е.Ю., Иллариошкин С.Н. Особенности биоэлектрической активности головного мозга у взрослых пациентов с POLG-ассоциированными заболеваниями. Эпилепсия и пароксизмальные состояния. 2020; 12 (4): 205–215. https://doi.org/10.17749/2077-8333/epi.par.con.2020.041

Features of brain electrical activity in adult patients with POLG-related disorders

Fedin P.A.¹, Nuzhnyi E.P.¹, Noskova T.Yu.¹, Seliverstov Yu.A.¹, Klyushnikov S.A.¹, Krylova T.D.², Tsygankova P.G.², Zakharova E.Yu.², Illarioshkin S.N.¹

¹Research Center of Neurology (80 Volokolamskoye shosse, Moscow 125367, Russia)

²Bochkov Research Centre for Medical Genetics (1 Moskvorechye Str., Moscow 115522, Russia)

Corresponding author: Evgenii P. Nuzhnyi, e-mail: enuzhny@mail.ru

SUMMARY

Introduction. Epilepsy is a common feature of mitochondrial disorders, including those associated with mutations in the POLG gene. Nevertheless, brain electrical activity features of POLG-related disorders in adult patients have not been adequately studied.

Objective. To study the features and characteristics of the electroencephalography (EEG) pattern in adult patients with POLG-related disorders.

Material and methods. Eight patients were examined: 7 with SANDO (Sensory Ataxic Neuropathy, Dysarthria, Ophthalmoparesis) syndrome, and 1 with MEMSA (Myoclonic Epilepsy Myopathy Sensory Ataxia) syndrome; median age was 32.5 years. All patients underwent routine EEG monitoring using a 19-channel electroencephalograph according to the generally accepted method.

Results. Epileptic seizures were found in 3 patients, for 2 of them – as the first manifestation of the disease. In 6 patients, theta waves predominated in the occipital regions. Of those 6 patients, in 5 bilateral synchronous bursts of theta and delta wave groups were identified being more prominent in the frontocentral regions; 4 patients had transient non-lateralized delta activity in the occipital and parieto-occipital brain regions. In all patients, opening eyes led to the depression of rhythms and burst suppression. After photostimulation, in 2 cases bilateral synchronous bursts of delta and theta wave groups were recorded predominantly in frontal lobes. In 3 patients during hyperventilation an increase in delta activity in the occipital lobes and bilateral synchronous bursts of delta wave groups were observed. Epileptiform activity was recorded in 2 cases.

Conclusion. In adult patients with POLG-related disorders, regardless of the clinical manifestation, typical EEG features include generalized background slowing, theta and delta bursts in occipital lobes with their suppression by opening eyes.

KEYWORDS

Mitochondrial disorders, POLG gene, SANDO syndrome, MEMSA syndrome, electroencephalography, epilepsy.

Received: 21.09.2020; in the revised form: 16.11.2020; accepted: 25.12.2020

Conflict of interests

The authors declare no conflict of interest regarding this publication.

Financial support

The study was performed with the financial support of the Russian Foundation for Basic Research, research project No. 19-015-00171.

Contribution of authors

All authors contributed equally to this article.

For citation

Fedin P.A., Nuzhnyi E.P., Noskova T.Yu., Seliverstov Yu.A., Klyushnikov S.A., Krylova T.D., Tsygankova P.G., Zakharova E.Yu., Illarioshkin S.N. Features of brain electrical activity in adult patients with POLG-related disorders. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2020; 12 (4): 205-215 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par. con.2020.041

ВВЕДЕНИЕ / INTRODUCTION

Митохондриальные болезни представляют собой обширную группу наследственных заболеваний, в основе патогенеза которых лежат нарушение работы дыхательной цепи митохондрий и недостаточность окислительного фосфорилирования. Для этой группы патологий характерен широкий спектр как неврологических (атаксия, невропатия, миопатия, эпилепсия, экстрапирамидные нарушения и др.), так и экстраневральных (кардиомиопатия, ретинопатия, гепато- и нефропатия, эндокринопатии) проявлений, что связано с системным поражением наиболее энергозависимых тканей [1].

Одним из ядерных генов, которые тесно связаны с функционированием митохондрий, является ген POLG, также известный как POLG1, кодирующий каталитическую субъединицу митохондриальной полимеразы гамма. Данный фермент играет важную роль в репликации митохондриальной ДНК (мтДНК). Патогенность мутаций реализуется двумя путями: развитием множественных делеций мтДНК и/или снижением числа копий мтДНК в пораженных тканях, что в конечном счете приводит к нарушению тканевого дыхания, а в ряде случаев – к лактат-ацидозу [2].

Неврологические проявления POLG-ассоциированных заболеваний крайне разнообразны и характеризуются сочетанием наружного офтальмопареза, атаксии, миопатии, полиневропатии, двигательных расстройств, мигрени, когнитивных и психопатологических нарушений [1, 3]. Описано несколько перекрывающихся фенотипов, обусловленных мутациями в данном гене. Одним из наиболее тяжелых является синдром Альперса, дебютирующий в раннем возрасте с фармакорезистентной эпилепсии, задержки психомоторного развития и гепатопатии с дальнейшим развитием тяжелой печеночной недостаточности. Также спектр POLG-ассоциированных расстройств включает синдромы с поздним дебютом и более мягким течением: прогрессирующая наружная офтальмоплегия, синдром MEMSA (англ. Myoclonic Epilepsy Myopathy Sensory Ataxia – миоклонус-эпилепсия, миопатия, сенситивная атаксия), синдромы атаксии-невропатии, в частности синдромы SANDO (англ. Sensory Ataxic Neuropathy, Dysarthria, Ophthalmoparesis - сенситивная атаксия, невропатия, дизартрия, офтальмопарез), MIRAS (англ. Mitochondrial Recessive Ataxia Syndrome – митохондриальная рецессивная атаксия) и др. [2, 4].

Эпилепсия является одним из характерных и клинически значимых проявлений POLG-ассоциированных расстройств, определяющих тяжесть и прогноз заболевания. Наиболее часто наблюдаются фокальные и миоклонические эпилептические приступы, в том числе с эволюцией в билатеральные тоникоклонические приступы и развитием эпилептического статуса, при этом на электроэнцефалограмме (ЭЭГ) часто регистрируется эпилептиформная активность в затылочных долях [5, 6].

Большинство опубликованных работ по эпилепсии при POLG-ассоциированных заболеваниях посвящено изучению течения и феноменологии приступов, а также ЭЭГ-паттернам у пациентов детского возраста [7-9], в то время как исследования данной проблемы у взрослых довольно редки.

Цель: изучить особенности и характеристики ЭЭГкартины у взрослых пациентов с POLG-ассоциированными заболеваниями.

MATEРИАЛ И METOДЫ / MATERIAL AND METHODS

Мы провели ретроспективный анализ особенностей биоэлектрической активности головного мозга у группы взрослых пациентов с генетически подтвержденными POLG-ассоциированными заболеваниями.

В исследование включены 8 больных (3 мужчин и 5 женщин) в возрасте от 20 до 39 лет (медиана возраста 32,5 года), которые наблюдались в Научном центре неврологии с 2013 по 2020 г. У 7 пациентов был диагностирован синдром SANDO, у 1 пациентки - синдром MEMSA. Медиана возраста дебюта болезни составила 29 лет (14-32 года), длительности заболевания - 6 (от 2 до 7) лет. ДНК-диагностику у 6 больных выполняли с использованием MLPA-панели для детекции семи частых мутаций (p.W748S, p.G848S, р.Т914P, р.А467T, р.L304R, р.L587R, р.G737R; транскрипт NM_002693.2) в гене POLG в лаборатории наследственных болезней обмена веществ Медико-генетического научного центра им. академика Н.П. Бочкова, у 2 пациентов - методом массового параллельного секвенирования с помощью оригинальной таргетной мультигенной панели (300 генов) на платформе Illumina MiSeq (Illumina, Inc, США), разработанной в Научном центре неврологии и описанной ранее [10].

Всем больным проводили подробную оценку неврологического статуса, общеклинические обследования, магнитно-резонансную томографию (MPT) головного мозга в стандартных режимах (T1, T2, T2 FLAIR, DWI), стимуляционную (по показаниям – игольчатую) электромиографию.

Также всем пациентам выполняли ЭЭГ на 19-канальном компьютерном электроэнцефалографе «Нейрокартограф» (МБН, Москва, Россия) по общепринятой методике (фоновая ЭЭГ, проба с открыванием глаз, ритмическая фотостимуляция в полосе частот 6-24 Гц и гипервентиляция 3 мин) [11]. Для анализа ЭЭГ использовали монополярный и биполярный способы регистрации. Регистрирующие электроды накладывали согласно международной системе «10-20». Активные электроды располагали в отведениях 01, 02, P3, P4, C3, C4, F3, F4, T3, T4, T5, T6, Fp1, Fp2, F7, F8. Анализировали следующие параметры ЭЭГ: наличие межполушарной асимметрии, наличие пароксизмальной активности, особенности основной активности, эффект от гипервентиляции и фотостимуляции.

Количественные данные описывали с помощью медианы, значений минимума и максимума; качественные данные — в виде частот и процентов. Нормальность распределения оценивали с помощью теста Шапиро—Уилка.

Исследование одобрено локальным этическим комитетом Научного центра неврологии. Все участники получили необходимую информацию о проведенных обследованиях и добровольно подписали информированное согласие.

PEЗУЛЬТАТЫ / RESULTS

Клиническая картина и данные параклинических методов обследования большинства больных с синдромом SANDO были подробно описаны ранее [12]. В таблице отражены характеристики пациентов группы, проанализированной нами в данном исследовании. В ней наиболее часто встречалась мажорная мутация p.W748S (87,5% мутантных аллелей, у 6 больных — в гомозиготном состоянии).

Все случаи синдрома SANDO проявлялись классической клинической картиной: сенситивная и мозжечковая атаксия, сенсорная полиневропатия, дизартрия, наружный офтальмопарез. Кроме того, у всех пациентов выявлены умеренные когнитивные нарушения. У 3 больных в клинической картине наблюдалась эпилепсия: у пациента Н.Р. с синдромом SANDO отмечены билатеральные клонические приступы с фокальным дебютом и сохранным сознанием (см. клинический пример № 1), у пациентки К.М. с синдромом SANDO - фокальные приступы с сенсорным дебютом, у пациентки С.Н. с синдромом MEMSA - билатеральные тонико-клонические приступы с фокальным сенсорным дебютом (см. клинический пример № 2).

В целом по группе у 6 больных на ЭЭГ в фоновой записи в затылочных отделах преобладала тета-активность с амплитудой до 40-60-100 мкВ, из них у 5 пациентов регистрировались билатерально-синхронные вспышки групп тета-волн, тета- и дельта-волн с амплитудой до 60-80-150 мкВ, более выраженные в лобно-центральных отделах; у 4 больных в затылочных, затылочно-теменных отделах временами преобладала дельта-активность с амплитудой до 50-100 мкВ. Открывание глаз приводило к депрессии ритмов и подавлению вспышек у всех пациентов. После ритмической фотостимуляции у 2 больных регистрировались билатерально-синхронные вспышки групп тета- и дельта-волн с амплитудой до 100-150 мкВ, преобладающие в лобных отделах. При гипервентиляции у 3 пациентов отмечено усиление дельта-активности в затылочных отделах с амплитудой до 40-60 мкВ, а также билатерально-синхронные вспышки групп дельта-волн с амплитудой до 80-200 мкВ, преобладающие в лобных, лобно-центральных отделах. Эпилептиформная активность (билатерально-синхронные вспышки групп дельта-волн с частотой 3,5-4 Гц и амплитудой до 100 мкВ, более выраженные в затылочных и лобных отделах) регистрировалась у 2 пациенток (см. клинический пример № 2).

Клинический пример № 1 (синдром SANDO)

У пациента Н.Р., 34 года, в 29 лет впервые после пробуждения развился эпизод судорог по всему телу с сохранным сознанием длительностью около 2 мин. В последующие годы больной отмечал три подобных эпизода с частотой 1 раз в год. На фоне приема небольших доз леветирацетама (500 мг/сут) приступы прекратились. В 30 лет появились шаткость при ходьбе и двоение; с 31 года — нечеткость речи.

По данным МРТ головного мозга в белом веществе обеих гемисфер мозжечка, варолиевом мосту, среднем мозге и таламусах определялись симметричные участки гиперинтенсивного магнитно-резонансного сигнала в режимах Т2 и Т2 FLAIR. На момент осмотра отмечены двусторонний птоз век, наружный офтальмопарез, диплопия, легкая дизартрия и дисфония, ослабление глубоких рефлексов, снижение проприоцептивной и вибрационной чувствительности в стопах, статико-локомоторная и динамическая атаксия (сенситивная и мозжечковая), тремор головы.

По результатам ЭЭГ (леветирацетам 500 мг/сут), в фоне альфа-ритм замедлен с частотой 8—9 Гц и амплитудой до 30 мкВ, преобладает в затылочно-теменных отделах; тета-активность с амплитудой до 30 мкВ — в лобно-центральных отделах. При открывании глаз наблюдалась депрессия ритмов. После ритмической фотостимуляции (РФС) фиксировалось усиление тета- и дельта-активности с амплитудой до 40—60 мкВ. При гипервентиляции в затылочных отделах усилена тета- и дельта-активность с амплитудой до 40 мкВ, регистрировались билатерально-синхронные группы тета- и дельта-волн с амплитудой до 40—80 мкВ (рис. 1).

Таблица 1. Клинико-демографические и генетические данные пациентов с POLG-ассоциированными заболеваниями

Table 1. Clinical, demographic and genetic data of patients with POLG-associated diseases

Table 1. Clinical, demographic and genetic data of patients with POLG-associated diseases					
Пациент (пол) / Patient (gender)	Возраст (дебют), лет / Age (debut), years	Фенотип / Phenotype	Генотип / Genotype	Эпиприступы / Epileptic seizures	Результаты МРТ головного мозга / Brain MRI results
B.B. (M) / V.V. (M)	20 (14)	SANDO	L931R/W748S	Heт/No	Hoрма / Norm
C.O. (Ж) / S.O. (F)	32 (25)	SANDO	W748S/W748S	Нет / No	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка / Symmetrical increase in signal intensity in T2 mode in the cerebellar hemispheres
Ш.О. (Ж) / Sh.O. (F)	26 (24)	SANDO	W748S/W748S	Heт / No	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка и нижних оливах / Symmetrical increase in signal intensity in T2 mode in the cerebellar hemispheres and lower olives
H.P. (M) / N.R. (M)	32 (28)	SANDO	W748S/W748S	Билатеральные клонические с фокальным дебютом и сохранным сознанием / Bilateral clonic with vocal debut and preserved consciousness	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка, варолиевом мосту, среднем мозге и таламусах / Symmetric increased signal intensity in T2 mode in the hemispheres of the cerebellum, pons Varolii, the midbrain and the thalamus
K.A. (M) / K.A. (M)	35 (30)	SANDO	W748S/W748S	Нет / No	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка / Symmetrical increase in signal intensity in T2 mode in the cerebellar hemispheres
B.O. (Ж) / V.O. (F)	39 (32)	SANDO	W748S/W748S	Нет / No	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка, нижних оливах и таламусах / Symmetrical increase in signal intensity in T2 mode in the cerebellar hemispheres, lower olives and thalamuses
K.M. (Ж) / K.M. (F)	21 (20)	SANDO	W748S/W748S	Фокальные с сенсор- ным дебютом / Focal with sensory debut	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка с гипоинтенсивным центром в режиме T1; симметричное повышение интенсивности сигнала в режиме T2 и небольшая «отечность» головок хвостатых ядер и таламусов / Symmetric increased signal intensity in T2 mode in the hemispheres of the cerebellum with a hypointensive center in T1 mode; a symmetrical increase in signal intensity in T2 mode and a small "swelling" of the heads of the caudate nuclei and thalamuses
С.Н. (Ж) / S.N. (F)	37 (30)	MEMSA	A143V/W748S	Билатеральные тонико- клонические с фокаль- ным сенсорным дебю- том / Bilateral tonic-clonic with focal sensory debut	Симметричное повышение интенсивности сигнала в режиме T2 в полушариях мозжечка, средних мозжечковых ножках и таламусах, атрофия червя мозжечка / Symmetrical increase in signal intensity in T2 mode in the cerebellar hemispheres, middle cerebellar legs and thalamuses, cerebellar vermis atrophy

Примечание. МРТ – магнитно-резонансная томография.

Note.MRI - magnetic resonance imaging

Рисунок 1. ЭЭГ пациента Н.Р. (синдром SANDO) при гипервентиляции: тета- и дельта-активность в затылочных отделах, билатерально-синхронные группы тета- и дельта-волн

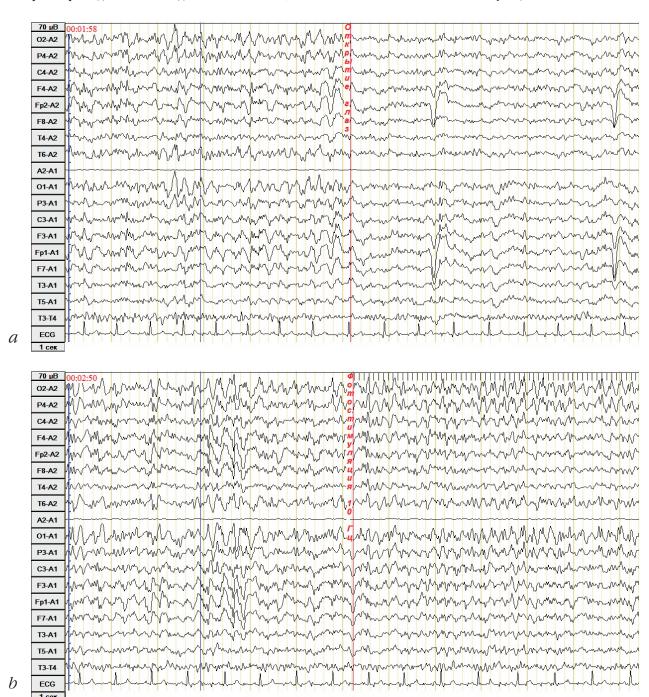
Figure 1. EEG of patient N.R. (SANDO syndrome) in hyperventilation: theta, delta activity in the occipital regions, bilaterally synchronous groups of theta, delta waves

Клинический пример № 2 (синдром MEMSA)

У пациентки С.Н., 37 лет, заболевание дебютировало в 30 лет: ночью после пробуждения возник фокальный приступ, который сопровождался напряжением и парестезиями в левой руке, переходящими на все тело с последующей потерей сознания и развитием билатеральных тонико-клонических судорог. Аналогичные приступы повторялись примерно 2 раза в месяц, большинство – после пробуждения. Первоначально больная принимала вальпроевую кислоту в дозе 1000 мг/сут (до установления диагноза митохондриального заболевания), однако препарат был заменен на леветирацетам в суточной дозе 1500 мг в связи с наличием повторных приступов, выпадением волос, увеличением массы тела, нарастанием интенсивности постурально-кинетического тремора. На фоне приема леветирацетама эпилептические приступы прекратились.

По данным МРТ головного мозга определены зоны симметричного измененного магнитно-резонансного сигнала в полушариях мозжечка, средних мозжечковых ножках, таламусе с обеих сторон, атрофические изменения червя мозжечка. В анализе крови выявлен лактат-ацидоз (лактат 4,1 ммоль/л при норме до 1,6 ммоль/л). На момент осмотра в неврологическом статусе пациентки наблюдались легкий офтальмопарез, дизартрия, статико-локомотор-

ная атаксия, легкий вялый проксимальный тетрапарез (на игольчатой электромиограмме определен первично-мышечный паттерн поражения), сенсорная аксональная полиневропатия (подтверждена стимуляционной электромиографией), фокальный миоклонус в левой руке, цервикальная дистония, когнитивные и аффективные нарушения (тревога, депрессия).


По результатам ЭЭГ (леветирацетам 1500 мг/сут), в фоне альфа-ритм представлен в виде отдельных групп волн с амплитудой до 30 мкВ в затылочно-теменно-центральных и затылочно-теменно-височных отделах, с периодами преобладания дельта-активности с частотой 3.5-4 Гц и амплитудой до 70-110 мкВ. микшированной острыми волнами, спайками. Закрывание глаз провоцировало появление вспышек спайков и дельта-волн с тенденцией к формированию спайк-волновых разрядов (в затылочно-теменных и лобных отделах). При открывании глаз отмечена депрессия ритмов и прекращение разрядов (рис. 2, а). При РФС фоновая ЭЭГ существенно не изменялась. Между эпизодами РФС регистрировались билатерально-синхронные вспышки групп дельта-волн с частотой 3,5-4 Гц и амплитудой до 100 мкВ, более выраженные в затылочных и лобных отделах (рис. 2, b). При гипервентиляции фоновая ЭЭГ существенно не изменялась.

ОБСУЖДЕНИЕ / DISCUSSION

По данным литературы, эпилептические приступы наблюдаются у 35—60% пациентов с биохимически подтвержденными митохондриальными нарушениями [13—15]. Недавние исследования показали, что

эпилептические приступы возникают у 40% детей и 23% взрослых со всеми типами первичных митохондриальных заболеваний [16, 17].

Эпилепсия часто наблюдается у пациентов с POLGассоциированными расстройствами [18]: в общей сложности более 128 мутаций в этом гене связаны

Рисунок 1. ЭЭГ пациентки С.Н. (синдром MEMSA):

- a фоновая активность: депрессия ритмов и прекращение спайк-волновых разрядов при открывании глаз;
- b билатерально-синхронные вспышки групп дельта-волн, более выраженные в затылочных и лобных отделах между эпизодами ритмической фотостимуляции

Figure 1. EEG of patient S.N. (MEMSA syndrome):

- a background activity: depression of rhythms and cessation of spike-wave discharges when opening the eyes;
- b bilateral synchronous flashes of delta wave groups more pronounced in the occipital and frontal areas between episodes of rhythmic photostimulation

формацию о репринтах можно получить в редакции. Тел.: +7 (495) 649-54-95;

анная интернет-версия статьи была скачана с сайта http://www.epilepsia.su.

с развитием эпилептических приступов [6]. Часто эпилепсия появляется в дебюте заболевания, особенно у детей [19]. Фокальные приступы, обычно переходящие в билатеральные тонико-клонические, являются наиболее распространенными типами приступов как у взрослых, так и у детей, причем эпилептиформные изменения на ЭЭГ преимущественно регистрируются в затылочных областях, по крайней мере на начальном этапе заболевания [5, 20]. Реже фокальные эпилептические разряды возникают в височной и лобной областях, а мультифокальная или генерализованная эпилептическая активность регистрируется во время развития эпилептического приступа или эпилептического статуса [5, 6].

Происхождение эпилептических приступов из задних отделов теменно-височных или затылочных областей может объяснять высокую частоту развития мигрени со зрительной аурой при POLG-ассоциированных заболеваниях [21]. Вполне вероятно, что мигрень и фокальные эпилептические приступы у таких пациентов представляют собой два разных проявления одного и того же коркового раздражения. В некоторых случаях мигрень и эпилептические приступы взаимосвязаны: длительные мигренозные приступы могут провоцировать судороги у больных с эпилепсией [22, 23], а эпилептические приступы могут вызывать мигрень [23].

Для POLG-ассоциированных заболеваний характерна затылочная эпилепсия, часто отмечаются резистентные к терапии фокальные эпилептические приступы с позитивными и негативными зрительными феноменами, происходящими ежедневно в течение нескольких недель, месяцев или даже лет. Эпилептический генез этих симптомов подтверждается ЭЭГ-исследованием, при котором регистрируется фокальная эпилептиформная активность в затылочных отведениях [5]. Также на ЭЭГ выявляется общее замедление ритмов, а в затылочно-височных и затылочно-теменных отведениях преобладают медленноволновая активность дельта-диапазона (может быть более выраженна в одном из полушарий головного мозга), острые волны, которые подавляются при открывании глаз даже через несколько лет после начала эпилепсии [24]. Данный феномен наблюдается в иктальной и интериктальной ЭЭГ и может быть ранней характеристикой ЭЭГ у больных с POLG-ассоциированными расстройствами.

У всех обследованных нами пациентов по данным ЭЭГ отмечены изменения биоэлектрической активности. Замедление альфа-ритма и появление билатерально-синхронных вспышек тета- и дельта-волн, регрессирующих при открывании глаз, наблюдалось у всех больных независимо от клинических проявлений заболевания. Данные изменения указывают на

поражение затылочно-теменных отделов головного мозга, причем у 2 пациентов дополнительно регистрировалась аномальная реакция на фотостимуляцию, что косвенно подтверждает вовлечение затылочных долей. Схожие особенности ЭЭГ у больных с POLG-ассоциированными расстройствами отмечали ранее и другие авторы [5, 6, 24].

Причина преимущественного вовлечения задних отделов головного мозга при митохондриальных заболеваниях (POLG-ассоциированных, синдроме MELAS¹ и др.) до конца не известна, но теоретически это может указывать на отличия в их митохондриальной организации. В состоянии бодрствования затылочная кора является одним из наиболее активных участков головного мозга из-за постоянной переработки зрительной информации, что делает ее потенциально уязвимой к повреждению из-за нарушений энергетического обмена. Однако причина, по которой это не относится ко всем митохондриальным заболеваниям, остается неясной.

По данным МРТ головного мозга у большинства наших пациентов отмечены очаговые поражения полушарий мозжечка, таламуса и ствола мозга. Ни у одного больного не наблюдалось структурных изменений больших полушарий головного мозга и, в частности, затылочно-теменных отделов. Таким образом, в нашей работе именно ЭЭГ выявила патологию затылочных долей на функциональном уровне. Существующие ограничения метода стандартной МРТ для визуализации зон раннего поражения головного мозга у пациентов с митохондриальными заболеваниями возможно преодолеть, дополнительно используя методики магнитно-резонансной спектроскопии или позитронно-эмиссионной томографии.

Из 8 больных в нашем исследовании у 3 отмечены эпилептические приступы. В связи с немногочисленностью наблюдений нельзя однозначно судить о частоте распространения эпилепсии при указанной патологии. У пациента H.P. (генотип p.W748S/p.W748S) зафиксированы билатеральные клонические приступы с фокальным дебютом и сохранным сознанием, у пациентки К.М. (генотип p.W748S/p.W748S) - фокальные приступы с сенсорным дебютом, у пациентки С.Н. (генотип p.A143V/p.W748S) – билатеральные тонико-клонические приступы с фокальным сенсорным дебютом. У больного Н.Р. на ЭЭГ регистрировалось выраженное замедление фоновой активности (тета- и дельта-волны в затылочных отделах) без характерных для миоклоний полипик-волновых разрядов. Это, вероятно, объясняется тем, что приступы развивались только при пробуждении, а исследование проводилось на фоне приема леветирацетама.

Обращает на себя внимание отсутствие у наших пациентов фокальных приступов с позитивными

¹ MELAS – англ. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (митохондриальная энцефалопатия с лактат-ацидозом и инсультоподобными эпизодами).

и негативными зрительными феноменами, описанных зарубежными авторами, несмотря на наличие электрографических признаков вовлечения затылочных долей. Также нельзя не отметить более доброкачественное течение эпилепсии в нашей выборке больных по сравнению с литературными данными. Возможно, это связано с тем, что мы не получили подтверждения происхождения приступов из затылочных отделов и, соответственно, развития фармакорезистентной затылочной эпилепсии с частыми приступами.

Известно, что повторные эпилептические приступы способствуют усугублению митохондриальной дисфункции, что в свою очередь может приводить к метаболическому кризу и летальному исходу. Эпилепсия является одним из наиболее важных факторов, влияющих на инвалидизацию и смертность у данных пациентов. Агрессивное лечение приступов необходимо для снижения смертности у больных с POLG-ассоциированной эпилепсией [5, 21]. Вместе с тем очень важен выбор противоэпилептического препарата. Так, препарат вальпроевой кислоты, первоначально назначенный пациентке с синдромом MEMSA, не только не улучшил ее состояния, но и привел к усилению тремора. Несмотря на клиническое улучшение, у больной на фоне лечения сохранялись выраженные изменения биоэлектрической активности.

Таким образом, можно согласиться с B.A. Engelsen et al., что лечение эпилепсии у большинства больных с мутациями в гене POLG является очень сложной задачей и эпилепсия может избирательно реагировать только на некоторые противоэпилептические препараты [5]. В настоящее время не существует определенных схем противоэпилептической терапии с доказанной эффективностью у пациентов с митохондриальными заболеваниями, однако, по мнению большинства экспертов, наиболее предпочтительным является сочетание блокаторов натриевых каналов (например, ламотриджина) с бензодиазепинами и леветирацетамом или топираматом [2]. Необходимо помнить, что препараты вальпроевой кислоты противопоказаны больным с POLG-ассоциированными расстройствами из-за их высокой гепатотоксичности [25]. По этой же причине не рекомендуется назначение фенитоина и барбитуратов.

По опубликованным данным, средняя продолжительность жизни пациентов с POLG-ассоциированными заболеваниями составляет 8 лет после начала эпилепсии [5]. Даже при внешне доброкачественном течении состояние больного может внезапно ухудшиться с развитием фокальной или генерализованной эпилепсии [26]. Это подчеркивает необходимость тщательного наблюдения, включающего ЭЭГ-обследование, и пожизненного приема противоэпилептических препаратов для пациентов с POLG-ассоциированными заболеваниями и эпилепсией.

ЗАКЛЮЧЕНИЕ / CONCLUSION

Митохондриальные заболевания характеризуются широким спектром проявлений, одним из которых является эпилепсия. У пациентов с POLG-ассоциированными расстройствами электрографическая картина характеризуется замедлением фоновой активности и наличием вспышек тета- и дельта-волн в задних отделах головного мозга, которые подавляются при открывании глаз.

ЛИТЕРАТУРА:

- Руденская Г.Е., Захарова Е.Ю. Наследственные нейрометаболические болезни юношеского и взрослого возраста. М.: ГЭОТАР-Ме-
- Rahman S., Copeland W.C. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019; 15 (1): 40-52. https://doi.org/10.1038/s41582-018-0101-0.
- 3. Stumpf J.D., Saneto R.P., Copeland W.C. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol. 2013; 5 (4): a011395. https://doi.org/10.1101/ cshperspect.a011395.
- Horvath R., Hudson G., Ferrari G., et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006; 129 (Pt 7): 1674-84. https://doi.org/10.1093/brain/awl088.
- Engelsen B.A., Tzoulis C., Karlsen B., et al. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain. 2008; 131 (Pt 3): 818-28. https://doi.org/10.1093/brain/awn007.
- 6. Anagnostou M.E., Ng Y.S., Taylor R.W., McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: a clinical and molecular genetic review. Epilepsia. 2016; 57 (10): 1531-45. https://doi.org/10.1111/epi.13508.
- 7. Михайлова С.В., Захарова Е.Ю., Цыганкова П.Г. и др. Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма. Российский вестник перинатологии и педиатрии. 2012; 57 (4-2): 54-61.
- Заваденко Н.Н., Холин А.А. Эпилепсия у детей с митохондриальными заболеваниями: особенности диагностики и лечения. Эпилепсия и пароксизмальные состояния. 2012; 4 (2): 21-7.

- 9. Батышева Т.Т., Трепилец В.М., Ахадова Л.Я., Голосная Г.С. Синдром Альперса-Хуттенлохера. Эпилепсия и пароксизмальные состояния. 2015; 7 (1): 46-55.
- 10. Абрамычева Н.Ю., Федотова Е.Ю., Клюшников С.А. и др. Оригинальная таргетная генетическая панель для диагностики нейродегенеративных заболеваний на основе секвенирования следующего поколения: первый опыт применения. Современные технологии в медицине. 2016; 8 (4): 185-90. https://doi.org/0.17691/ stm2016.8.4.23.
- 11. Рекомендации экспертного совета по нейрофизиологи и Российской Противоэпилептической Лиги по проведению рутинной ЭЭГ. Эпилепсия и пароксизмальные состояния. 2016; 8 (4): 99-108.
- 12. Нужный Е.П., Клюшников С.А., Селиверстов Ю.А. и др. Сенситивная атаксия, невропатия, дизартрия и офтальмопарез (синдром SANDO): характеристика серии клинических наблюдений в России. Анналы клинической и экспериментальной неврологии. 2019; 13 (2): 5-13. https://doi.org/10.25692/ACEN.2019.2.1.
- 13. Canafoglia L., Franceschetti S., Antozzi C., et al. Epileptic phenotypes associated with mitochondrial disorders. Neurology. 2001; 56 (10): 1340-6. https://doi.org/10.1212/wnl.56.10.1340.
- 14. Debray F.G., Lambert M., Chevalier I., et al. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. 2007; 119 (4): 722-33. https://doi.org/10.1542/peds.2006-1866.
- Khurana D.S., Salganicoff L., Melvin J.J., et al. Epilepsy and respiratory chain defects in children with mitochondrial

- encephalopathies. Epilepsia. 2008; 39 (11): 8-13. https://doi. org/10.1055/s-2008-1076737.
- 16. Rahman S. Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 2015; 49: 71-5. https://doi.org/10.1016/j.yebeh.2015.05.003.
- 17. Whittaker R.G., Devine H.E., Gorman G.S., et al. Epilepsy in adults with mitochondrial disease: a cohort study. Ann Neurol. 2015; 78 (6): 949-57. https://doi.org/10.1002/ana.24525.
- 18. Winterthun S., Ferrari G., He L., et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology. 2005; 64 (7): 1204-8. https://doi. org/10.1212/01.WNL.0000156516.77696.5A.
- 19. Hikmat O., Eichele T., Tzoulis C., Bindoff L. Understanding the epilepsy in POLG related disease. Int J Mol Sci. 2017; 18 (9): 1845. https://doi. org/10 3390/jims18091845
- Wolf N.I., Rahman S., Schmitt B., et al. Status epilepticus in children with Alpers' disease caused by POLG1 mutations: EEG and MRI features. Epilepsia. 2009; 50 (6): 1596-1607. https://doi. org/10.1111/j.1528-1167.2008.01877.x.

- 21. Tzoulis C., Tran G.T., Coxhead J., et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol. 2014; 76 (1): 76-81. https://doi.org/10.1002/ana.24185.
- 22. Twomey J.A., Abbott R.J., Franks A.J., Hakin N.J. Status epilepticus complicating migraine. Acta Neurol Scand. 1988; 77 (4): 335-8. https://doi.org/10.1111/j.1600-0404.1988.tb05919.x.
- 23. Ekstein D., Schachter S.C. Postictal headache. Epilepsy Behav. 2010: 19 (2): 151-5. https://doi.org/10.1016/j.yebeh.2010.06.023.
- Roshal D., Glosser D., Zangaladze A. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype. Epilepsy Behav. 2011; 21 (2): 206-10. https://doi.org/10.1016/ j.yebeh.2011.03.003.
- 25. McFarland R., Hudson G., Taylor R.W., et al. Reversible valproate hepatotoxicity due to mutations in mitochondrial DNA polymerase gamma (POLG1). Arch Dis Child. 2008; 93 (2): 151-3. https://doi. org/10.1136/adc.2007.122911.
- Bindoff L.A., Engelsen B.A. Mitochondrial diseases and epilepsy. Epilepsia. 2012; 53 (Suppl 4): 92-7. https://doi. org/10.1111/j.1528-1167.2012.03618.x.

REFERENCES:

- Rudenskaya G.E., Zakharova E.Yu. Hereditary neurometabolic diseases of youth and adult age. Moscow: GEOTAR-Media; 2018 (in Russ.).
- Rahman S., Copeland W.C. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019; 15 (1): 40-52. https://doi.org/10.1038/s41582-018-0101-0.
- Stumpf J.D., Saneto R.P., Copeland W.C. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol. 2013; 5 (4): a011395. https://doi.org/10.1101/ cshperspect.a011395.
- Horvath R., Hudson G., Ferrari G., et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006; 129 (Pt 7): 1674-84. https://doi.org/10.1093/brain/awl088.
- Engelsen B.A., Tzoulis C., Karlsen B., et al. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain. 2008; 131 (Pt 3): 818-28. https://doi.org/10.1093/brain/awn007.
- Anagnostou M.E., Ng Y.S., Taylor R.W., McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: a clinical and molecular genetic review. Epilepsia. 2016; 57 (10): 1531-45. https://doi.org/10.1111/epi.13508.
- Mikhailova S.V., Zakharova E.Yu., Tsygankova P.G., et al. Clinical polymorphism of mitochondrial encephalomyopathies caused by polymerase gamma gene mutations. Russian Bulletin of Perinatology and Pediatrics. 2012; 57 (4-2): 54-61 (in Russ.).
- Zavadenko N.N., Kholin A.A. Epilepsy in children with mytochondrial diseases: diagnostics and treatment features. Epilepsy and Paroxysmal Conditions. 2012; 4 (2): 21-7 (in Russ.).
- Batysheva T.T., Trepilets V.M., Akhadova L.Y., Golosnaya G.S. Alpers-Huttenlocher syndrome. Epilepsy and Paroxysmal Conditions. 2015; 7 (1): 46-55 (in Russ.).
- 10. Abramycheva N.Yu., Fedotova E.Yu., Klyushnikov S.A., et al. An original target genetic panel to diagnose neurodegenerative diseases on the basis of next-generation sequencing: first experience. Modern Technologies in Medicine. 2016; 8 (4): 185-90 (in Russ.). https://doi. org/0.17691/stm2016.8.4.23.
- 11. Guidelines for carrying out of routine EEG of neurophysiology expert board of Russian League Against Epilepsy. Epilepsy and Paroxysmal Conditions. 2016; 8 (4): 99-108 (in Russ.).
- 12. Nuzhniy Ye.P., Klyushnikov S.A., Seliverstov Yu.A., et al. Sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO syndrome): characteristics of a series of clinical observations in Russia. Annals of Clinical and Experimental Neurology. 2019; 13 (2): 5-13 (in Russ.). https://doi.org/10.25692/ACEN.2019.2.1.
- 13. Canafoglia L., Franceschetti S., Antozzi C., et al. Epileptic phenotypes associated with mitochondrial disorders. Neurology. 2001; 56 (10): 1340-6. https://doi.org/10.1212/wnl.56.10.1340.

- 14. Debray F.G., Lambert M., Chevalier I., et al. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. 2007; 119 (4): 722-33. https://doi.org/10.1542/ peds.2006-1866.
- 15. Khurana D.S., Salganicoff L., Melvin J.J., et al. Epilepsy and respiratory chain defects in children with mitochondrial encephalopathies. Epilepsia. 2008; 39 (11): 8-13. https://doi. org/10.1055/s-2008-1076737.
- Rahman S. Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 2015; 49: 71-5. https://doi.org/10.1016/j.yebeh.2015.05.003.
- 17. Whittaker R.G., Devine H.E., Gorman G.S., et al. Epilepsy in adults with mitochondrial disease: a cohort study. Ann Neurol. 2015; 78 (6): 949-57. https://doi.org/10.1002/ana.24525.
- Winterthun S., Ferrari G., He L., et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology. 2005; 64 (7): 1204-8. https://doi. org/10.1212/01.WNL.0000156516.77696.5A.
- Hikmat O., Eichele T., Tzoulis C., Bindoff L. Understanding the epilepsy in POLG related disease. Int J Mol Sci. 2017; 18 (9): 1845. https://doi. org/10.3390/ijms18091845.
- Wolf N.I., Rahman S., Schmitt B., et al. Status epilepticus in children with Alpers' disease caused by POLG1 mutations: EEG and MRI features. Epilepsia. 2009; 50 (6): 1596-1607. https://doi. org/10.1111/j.1528-1167.2008.01877.x.
- 21. Tzoulis C., Tran G.T., Coxhead J., et al. Molecular pathogenesis of polymerase gamma-related neurodegeneration. Ann Neurol. 2014; 76 (1): 76-81. https://doi.org/10.1002/ana.24185.
- 22. Twomey J.A., Abbott R.J., Franks A.J., Hakin N.J. Status epilepticus complicating migraine. Acta Neurol Scand. 1988; 77 (4): 335-8. https://doi.org/10.1111/j.1600-0404.1988.tb05919.x.
- 23. Ekstein D., Schachter S.C. Postictal headache. Epilepsy Behav. 2010; 19 (2): 151-5. https://doi.org/10.1016/ j.yebeh.2010.06.023.
- 24. Roshal D., Glosser D., Zangaladze A. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype. Epilepsy Behav. 2011; 21 (2): 206-10. https://doi.org/10.1016/ j.yebeh.2011.03.003.
- 25. McFarland R., Hudson G., Taylor R.W., et al. Reversible valproate hepatotoxicity due to mutations in mitochondrial DNA polymerase gamma (POLG1). Arch Dis Child. 2008; 93 (2): 151-3. https://doi. org/10.1136/adc.2007.122911.
- 26. Bindoff L.A., Engelsen B.A. Mitochondrial diseases and epilepsy. Epilepsia, 2012: 53 (Suppl 4): 92-7, https://doi.org/ 10.1111/j.1528-1167.2012.03618.x.

Сведения об авторах

Федин Павел Анатольевич – к.м.н., ведущий научный сотрудник лаборатории клинической нейрофизиологии ФГБНУ НЦН. ORCID ID: https://orcid.org/0000-0001-9907-9393; РИНЦ SPIN-код: 4717-2751.

Нужный Евгений Петрович - к.м.н., врач-невролог 5-го неврологического отделения ФГБНУ НЦН. ORCID ID: https:// orcid.org/0000-0003-3179-7668; РИНЦ SPIN-код: 5571-3386. E-mail: enuzhny@mail.ru.

Носкова Татьяна Юрьевна – к.м.н., старший научный сотрудник научно-консультативного отделения ФГБНУ НЦН. ORCID ID: https://orcid.org/0000-0002-1634-1497; РИНЦ SPIN-код: 2742-2148.

Селивёрстов Юрий Александрович – к.м.н., научный сотрудник научно-координационного и образовательного отдела ФГБНУ НЦН. ORCID ID: https://orcid.org/0000-0002-6400-6378; РИНЦ SPIN-код: 3876-6987.

Клюшников Сергей Анатольевич - к.м.н., ведущий научный сотрудник 5-го неврологического отделения ФГБНУ НЦН. ORCID ID: https://orcid.org/0000-0002-8752-7045; РИНЦ SPIN-код: 1769-2262.

Крылова Татьяна Дмитриевна – научный сотрудник лаборатории наследственных болезней обмена веществ ФГБНУ МГНЦ. РИНЦ SPIN-код: 8335-2050.

Цыганкова Полина Георгиевна — к.б.н., старший научный сотрудник лаборатории наследственных болезней обмена веществ ФГБНУ МГНЦ. ORCID ID: https://orcid.org/0000-0003-3998-3609; РИНЦ SPIN-код: 1121-3671.

Захарова Екатерина Юрьевна – д.м.н., заведующая лабораторией наследственных болезней обмена веществ ФГБНУ МГНЦ. РИНЦ SPIN-код: 7296-6097.

Иллариошкин Сергей Николаевич – д.м.н., профессор, чл.-корр. РАН, руководитель отдела исследований мозга ФГБНУ НЦН. ORCID ID: https://orcid.org/0000-0002-2704-6282; РИНЦ SPIN-код: 8646-9426.

About the authors

Pavel A. Fedin - Cand. Med. Sc., Leading Researcher, Laboratory of Clinical Neurophysiology, Research Center of Neurology. ORCID ID: https://orcid.org/0000-0001-9907-9393; RSCI SPIN-code: 4717-2751.

Evgenii P. Nuzhnyi - Cand. Med. Sc., Neurologist, 5th Neurological Department, Research Center of Neurology. ORCID ID: https://orcid.org/0000-0003-3179-7668; RSCI SPIN-code: 5571-3386. E-mail: enuzhny@mail.ru.

Tatiana Yu. Noskova – Cand. Med. Sc., Senior Researcher, Scientific and Consulting Department, Research Center of Neurology. ORCID ID: https://orcid.org/0000-0002-1634-1497; RSCI SPIN-code: 2742-2148.

Yury A. Seliverstov - Cand. Med. Sc., Researcher, Department of Scientific Coordination and Education, Research Center of Neurology. ORCID ID: https://orcid.org/0000-0002-6400-6378; RSCI SPIN-code: 3876-6987.

Sergey A. Klyushnikov - Cand. Med. Sc., Leading Researcher, 5th Neurological Department, Research Center of Neurology. ORCID ID: https://orcid.org/0000-0002-8752-7045; RSCI SPIN-code: 1769-2262.

Tatiana D. Krylova – Researcher, Laboratory of Hereditary Metabolic Diseases, Bochkov Research Centre for Medical Genetics. RSCI SPIN-code: 8335-2050.

Polina G. Tsygankova - Cand. Biol. Sc., Senior Researcher, Laboratory of Hereditary Metabolic Diseases, Bochkov Research Centre for Medical Genetics. ORCID ID: https://orcid.org/0000-0003-3998-3609; RSCI SPIN-code: 1121-3671.

Ekaterina Yu. Zakharova - Dr. Med. Sc., Head of Laboratory of Hereditary Metabolic Diseases, Bochkov Research Centre for Medical Genetics. RSCI SPIN-code: 7296-6097.

Sergey N. Illarioshkin - Dr. Med. Sc., Professor, Corresponding Member of RAS, Head of the Department of Brain Research, Research Center of Neurology, ORCID ID: https://orcid.org/0000-0002-2704-6282; RSCI SPIN-code: 8646-9426.