Hypotheses of development and strategies for overcoming drug resistance in epilepsy. Part I: Hypotheses of development
https://doi.org/10.17749/2077-8333/epi.par.con.2024.210
Abstract
Currently, the problem of effective therapy for drug-resistant epilepsy remains vastly relevant. The severity of drug-resistant epilepsy, remarkable negative social sequelae and sudden death in epilepsy pose a heavy burden on healthcare system. Although many innovative antiepileptic drugs have been developed in recent decades, surgical approach remains the only effective way to treat drug-resistant epilepsy which is coupled to significant health risks and does not guarantee freedom from seizures. The stumbling block in managing this pathology is the lack of knowledge on pathogenetic mechanisms, leaving a significant proportion of patients without quality medical care. There are different viewpoints on developing drug resistance in epilepsy, which are characterized by multilayered and overlapping molecular disease bases. The review presents the analysis of the existing hypotheses regarding the mechanisms underlying drug resistance development in epilepsy.
Keywords
About the Authors
A. M. YakimovRussian Federation
Alexey M. Yakimov.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
WoS ResearcherID AEW-9605-2022, Scopus Author ID 58161933100
E. E. Timechko
Russian Federation
Elena E. Timechko.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
WoS ResearcherID CAF-2677-2022
A. I. Paramonova
Russian Federation
Anastasia I. Paramonova.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
WoS ResearcherID HMP-3496-2023
A. A. Vasilieva
Russian Federation
Anastasia A. Vasilieva.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
F. K. Rybachenko
Russian Federation
Fedor K. Rybachenko.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
A. D. Rybachenko
Russian Federation
Anastasia D. Rybachenko.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
D. V. Dmitrenko
Russian Federation
Diana V. Dmitrenko - Dr. Sci. Med.
1 Partizan Zheleznyak Str., Krasnoyarsk, 660022
WoS ResearcherID H-7787-2016
References
1. Schmidt D., Schachter S.C. Drug treatment of epilepsy in adults. BMJ. 2014; 348: g254. https://doi.org/10.1136/BMJ.G254.
2. Nasyrova R.F., Sivakova N.A., Lipatova L.V., et al. Biological markers of the antiepileptic drugs efficacy and safety: pharmacogenetics and pharmacokinetics. Siberian Medical Review. 2017; 1: 17–25 (in Russ.). https://doi.org/10.20333/2500136-2017-1-17-25.
3. Falco-Walter J. Epilepsy – definition, classification, pathophysiology, and epidemiology. Semin Neurol. 2020; 40 (6): 617–23. https://doi.org/10.1055/S-0040-1718719.
4. Johannessen Landmark C., Johannessen S.I., Patsalos P.N. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin Drug Metab Toxicol. 2020; 16 (3): 227–38. https://doi.org/10.1080/17425255.2020.1724956.
5. Mesraoua B., Brigo F., Lattanzi S., et al. Drug-resistant epilepsy: definition, pathophysiology, and management. J Neurol Sci. 2023; 452: 120766. https://doi.org/10.1016/j.jns.2023.120766.
6. Kwan P., Arzimanoglou A., Berg A.T., et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51 (6): 1069–77. https://doi.org/10.1111/j.1528-1167.2009.02397.x.
7. Lerche H. Drug-resistant epilepsy – time to target mechanisms. Nat Rev Neurol. 2020; 16 (11): 595–6. https://doi.org/10.1038/s41582-020-00419-y.
8. Bazhanova E.D., Kozlov A.A., Litovchenko A.V. Mechanisms of drug resistance in the pathogenesis of epilepsy: role of neuroinflammation. A literature review. Brain Sci. 2021; 11 (5): 663. https://doi.org/10.3390/brainsci11050663.
9. Łukawski K., Czuczwar S.J. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin Drug Metab Toxicol. 2021; 17 (9): 1075–90. https://doi.org/10.1080/17425255.2021.1959912.
10. Sampaio L.P. Ketogenic diet for epilepsy treatment. Arq Neuropsiquiatr. 2016; 74 (10): 842–8. https://doi.org/10.1590/0004-282X20160116.
11. Bartolini E., Ferrari A.R., Lattanzi S., et al. Drug-resistant epilepsy at the age extremes: disentangling the underlying etiology. Epilepsy Behav. 2022; 132: 108739. https://doi.org/10.1016/j.yebeh.2022.108739.
12. Tang F., Hartz A.M.S., Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017; 8: 301. https://doi.org/10.3389/fneur.2017.00301.
13. Catalano A., Iacopetta D., Ceramella J., et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules. 2022; 27 (3): 616. https://doi.org/10.3390/molecules27030616.
14. Pérez-Pérez D., Frías-Soria C.L., Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav. 2021; 121 (Pt B): 106430. https://doi.org/10.1016/j.yebeh.2019.07.031.
15. Liu X. ABC family transporters. Adv Exp Med Biol. 2019; 1141: 13–100. https://doi.org/10.1007/978-981-13-7647-4_2.
16. Brandt C., Bethmann K., Gastens A.M., Löscher W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis. 2006; 24 (1): 202–11. https://doi.org/10.1016/j.nbd.2006.06.014.
17. Garg N., Joshi R., Medhi B. A novel approach of targeting refractory epilepsy: need of an hour. Brain Res Bull. 2020; 163: 14–20. https://doi.org/10.1016/j.brainresbull.2020.07.012.
18. Kurre D., Dang P.X., Le L.T.M., et al. Structural insight into binding site access and ligand recognition by human ABCB1. BioRxiv. 2024; Aug 12: 2024.08.12.607598. https://doi.org/10.1101/2024.08.12.607598.
19. Elmeliegy M., Vourvahis M., Guo C., Wang D.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: review of clinical drug–drug interaction studies. Clin Pharmacokinet. 2020; 59 (6): 699–714. https://doi.org/10.1007/s40262-020-00867-1.
20. Fonseca-Barriendos D., Pérez-Pérez D., Fuentes-Mejía M., et al. Protein expression of P-glycoprotein in neocortex from patients with frontal lobe epilepsy. Epilepsy Res. 2022; 181: 106892. https://doi.org/10.1016/j.eplepsyres.2022.106892.
21. Mossel P., Arif W.M., De Souza G.S., et al. Quantification of P-glycoprotein function at the human blood-brain barrier using [18F] MC225 and PET. Eur J Nucl Med Mol Imaging. 2023; 50 (13): 3917–27. https://doi.org/10.1007/S00259-023-06363-5.
22. Dong J., Qin Z., Zhang W.D., et al. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update. Drug Resist Updat. 2020; 49: 100681. https://doi.org/10.1016/j.drup.2020.100681.
23. Kaur M., Gupta T., Gupta M., et al. Expressional study of permeability glycoprotein and multidrug resistance protein 1 in drug-resistant mesial temporal lobe epilepsy. Basic Clin Neurosci. 2023; 14 (5): 615–30. https://doi.org/10.32598/bcn.2021.2554.3.
24. Langeh U., Chawla P., Gupta G.D., Singh S. A novel approach to refractory epilepsy by targeting pgp peripherally and centrally: therapeutic targets and future perspectives. CNS Neurol Disord Drug Targets. 2020; 19 (10): 741–9. https://doi.org/10.2174/1871527319999200819093109.
25. Enrique A.V., Di Ianni M.E., Goicoechea S., et al. New anticonvulsant candidates prevent P-glycoprotein (P-gp) overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav. 2021; 121 (Pt B): 106451. https://doi.org/10.1016/j.yebeh.2019.106451.
26. Wen T., Liu Y.C., Yang H.W., et al. Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain. J Neurol Sci. 2008; 270 (1–2): 99–106. https://doi.org/10.1016/j.jns.2008.02.016.
27. Ke X.J., Cheng Y.F., Yu N., Di Q. Effects of carbamazepine on the P-gp and CYP3A expression correlated with PXR or NF-κB activity in the bEnd.3 cells. Neurosci Lett. 2019; 690: 48–55. https://doi.org/10.1016/j.neulet.2018.10.016.
28. Moerman L., Wyffels L., Slaets D., et al. Antiepileptic drugs modulate P-glycoproteins in the brain: a mice study with (11) C-desmethylloperamide. Epilepsy Res. 2011; 94 (1–2): 18–25. https://doi.org/10.1016/j.eplepsyres.2010.12.013.
29. Huang L., Li B., Li X., et al. Significance and mechanisms of P-glycoprotein in central nervous system diseases. Curr Drug Targets. 2019; 20 (11): 1141–55. https://doi.org/10.2174/1389450120666190308144448.
30. Ding Y., Wang R., Zhang J., et al. Potential regulation mechanisms of P-gp in the blood-brain barrier in hypoxia. Curr Pharm Des. 2019; 25 (10): 1041–51. https://doi.org/10.2174/1381612825666190610140153.
31. Mohamed L.A., Markandaiah S.S., Bonanno S., et al. Excess glutamate secreted from astrocytes drives upregulation of P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp Neurol. 2019; 316: 27–38. https://doi.org/10.1016/j.expneurol.2019.04.002.
32. Fonseca-Barriendos D., Frías-Soria C.L., Pérez-Pérez D., et al. Drug-resistant epilepsy: drug target hypothesis and beyond the receptors. Epilepsia Open. 2022; 7 (Suppl. 1): S23–33. https://doi.org/10.1002/epi4.12539.
33. Kim H., Kim D.W., Lee S.T., et al. Antiepileptic drug selection according to seizure type in adult patients with epilepsy. J Clin Neurol. 2020; 16 (4): 547–55. https://doi.org/10.3988/jcn.2020.16.4.547.
34. Bartolini E., Campostrini R., Kiferle L., et al. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci. 2020; 41 (4): 749–61. https://doi.org/10.1007/s10072-019-04190-x.
35. Kobayashi K., Endoh F., Ohmori I., Akiyama T. Action of antiepileptic drugs on neurons. Brain Dev. 2020; 42 (1): 2–5. https://doi.org/10.1016/j.braindev.2019.07.006.
36. Catterall W.A. Voltage gated sodium and calcium channels: discovery, structure, function, and pharmacology. Channels. 2023; 17 (1): 2281714. https://doi.org/10.1080/19336950.2023.2281714.
37. Parrini E., Marini C., Mei D., et al. Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Hum Mutat. 2017; 38 (2): 216–25. https://doi.org/10.1002/humu.23149.
38. Zhao G.X., Zhang Z., Cai W.K., et al. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis. Epilepsy Res. 2021; 173: 106615. https://doi.org/10.1016/j.eplepsyres.2021.106615.
39. Lin C.H., Ho C.J., Lu Y.T., Tsai M.H. Response to sodium channel blocking antiseizure medications and coding polymorphisms of sodium channel genes in Taiwanese epilepsy patients. BMC Neurol. 2021; 21 (1): 367. https://doi.org/10.1186/s12883-021-02395-2.
40. Al-Ward H., Liu C.Y., Liu N., et al. Voltage-gated sodium channel β1 gene: an overview. Hum Hered. 2020; 85 (3–6): 101–9. https://doi.org/10.1159/000516388.
41. Barbieri R., Nizzari M., Zanardi I., et al. Voltage-gated sodium channel dysfunctions in neurological disorders. Life. 2023; 13 (5): 1191. https://doi.org/10.3390/life13051191.
42. Bartolomei F., Gastaldi M., Massacrier A., et al. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol. 1997; 26 (10): 667–78. https://doi.org/10.1023/a:1018549928277.
43. Schaub C., Uebachs M., Beck H. Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy. Epilepsia. 2007; 48 (7): 1339–50. https://doi.org/10.1111/j.1528-1167.2007.01103.x.
44. Lombardo A.J., Kuzniecky R., Powers R.E., Brown G.B. Altered brain sodium channel transcript levels in human epilepsy. Brain Res Mol Brain Res. 1996; 35 (1–2): 84–90. https://doi.org/10.1016/0169-328x(95)00194-w.
45. Remy S., Urban B.W., Elger C.E., Beck H. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003; 17 (12): 2648–58. https://doi.org/10.1046/j.1460-9568.2003.02710.x.
46. Vreugdenhil M., Van Veelen C.W.M., Van Rijen P.C., et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res. 1998; 32 (1–2): 309–20. https://doi.org/10.1016/s0920-1211(98)00061-8.
47. Vreugdenhil M., Wadman W.J. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia. 1999; 40 (11): 1512–22. https://doi.org/10.1111/j.1528-1157.1999.tb02034.x.
48. de Lera Ruiz M., Kraus R.L. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem. 2015; 58 (18): 7093–118. https://doi.org/10.1021/jm501981g.
49. Zhao T., Wang L., Chen F. Potassium channel-related epilepsy: pathogenesis and clinical features. Epilepsia Open. 2024; 9 (3): 891–5. https://doi.org/10.1002/epi4.12934.
50. Gao K., Lin Z., Wen S., Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand. 2022; 146 (6): 699–707. https://doi.org/10.1111/ane.13695.
51. Niday Z., Tzingounis A.V. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018; 24 (4): 368–80. https://doi.org/10.1177/1073858418763752.
52. Catterall W.A., Lenaeus M.J., Gamal El-Din T.M. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol. 2020; 60: 133–54. https://doi.org/10.1146/annurev-pharmtox-010818-021757.
53. Lipscombe D., Andrade A., Allen S.E. Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences. Biochim Biophys Acta. 2013; 1828 (7): 1522–9. https://doi.org/10.1016/j.bbamem.2012.09.018.
54. Kessi M., Chen B., Peng J., et al. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis. 2021; 16 (1): 219. https://doi.org/10.1186/S13023-021-01850-0.
55. Verma M., Lizama B.N., Chu C.T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener. 2022; 11 (1): 3. https://doi.org/10.1186/S40035-021-00278-7.
56. Gurkoff G.G., Shahlaie K., Lyeth B.G. In vitro mechanical strain trauma alters neuronal calcium responses: implications for posttraumatic epilepsy. Epilepsia. 2012; 53 (Suppl. 1): 53–60. https://doi.org/10.1111/j.1528-1167.2012.03475.x.
57. Steinlein O.K. Calcium signaling and epilepsy. Cell Tissue Res. 2014; 357 (2): 385–93. https://doi.org/10.1007/s00441-014-1849-1.
58. Gambardella A., Labate A. The role of calcium channel mutations in human epilepsy. Prog Brain Res. 2014; 213: 87–96. https://doi.org/10.1016/B978-0-444-63326-2.00004-1.
59. Sears S.M.S., Hewett S.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med. 2021; 246 (9): 1069–83. https://doi.org/10.1177/1535370221989263.
60. Sarlo G.L., Holton K.F. Brain concentrations of glutamate and GABA in human epilepsy: a review. Seizure. 2021; 91: 213–27. https://doi.org/10.1016/j.seizure.2021.06.028.
61. Trinka E., Leitinger M. Management of status epilepticus, refractory status epilepticus, and super-refractory status epilepticus. Continuum. 2022; 28 (2): 559–602. https://doi.org/10.1212/con.0000000000001103.
62. Mathern G.W., Pretorius J.K., Leite J.P., et al. Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy. Epilepsy Res. 1998; 32 (1–2): 154–71. https://doi.org/10.1016/S0920-1211(98)00048-5.
63. Crino P.B., Duhaime A.C., Baltuch G., White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology. 2001; 56 (7): 906–13. https://doi.org/10.1212/wnl.56.7.906.
64. Adams C.E., Yonchek J.C., Schulz K.M., et al. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases. Neuroscience. 2012; 207: 274–82. https://doi.org/10.1016/j.neuroscience.2012.01.033.
65. Andersen J.V., Schousboe A., Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol. 2022; 217: 102331. https://doi.org/10.1016/j.pneurobio.2022.102331.
66. Çavuş I., Romanyshyn J.C., Kennard J.T., et al. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: microdialysis study of 79 patients at the yale epilepsy surgery program. Ann Neurol. 2016; 80 (1): 35–45. https://doi.org/10.1002/ana.24673.
67. Feng Y., Wei Z.H., Liu C., et al. Genetic variations in GABA metabolism and epilepsy. Seizure. 2022; 101: 22–9. https://doi.org/10.1016/j.seizure.2022.07.007.
68. Sazhina T.A., Sitovskaya D.A., Zabrodskaya Y.M., Bazhanova E.D. Functional imbalance of glutamate- and GABAergic neuronal systems in the pathogenesis of focal drug-resistant epilepsy in humans. Bull Exp Biol Med. 2020; 168 (4): 529–32. https://doi.org/10.1007/s10517-020-04747-3.
69. Carvill G.L., McMahon J.M., Schneider A., et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures. Am J Hum Genet. 2015; 96 (5): 808–15. https://doi.org/10.1016/j.ajhg.2015.02.016.
70. Mattison K.A., Butler K.M., Inglis G.A.S., et al. SLC6A1 variants identified in epilepsy patients reduce γ-aminobutyric acid transport. Epilepsia. 2018; 59 (9): e135–41. https://doi.org/10.1111/epi.14531.
71. Kang J.Q. Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res. 2017; 137: 9–18. https://doi.org/10.1016/j.eplepsyres.2017.08.013.
72. Hirose S. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res. 2014; 213: 55–85. https://doi.org/10.1016/B978-0-444-63326-2.00003-X.
73. Hernandez C.C., Tian X.J., Hu N., et al. Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABAA receptors. Brain Commun. 2021; 3 (2): fcab033. https://doi.org/10.1093/braincomms/fcab033.
74. Barker-Haliski M., White H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015; 5 (8): a022863. https://doi.org/10.1101/cshperspect.a022863.
75. Zaitsev A.V., Smolensky I.V., Jorratt P., Ovsepian S.V. Neurobiology, functions, and relevance of excitatory amino acid transporters (EAATs) to treatment of refractory epilepsy. CNS Drugs. 2020; 34 (11): 1089–103. https://doi.org/10.1007/s40263-020-00764-y.
76. Lazarowski A., Czornyj L., Lubienieki F., et al. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007; 48 (Suppl. 5): 140–9. https://doi.org/10.1111/j.1528-1167.2007.01302.x.
77. Lazarowski A., Massaro M., Schteinschnaider A., et al. Neuronal MDR-1 gene expression and persistent low levels of anticonvulsants in a child with refractory epilepsy. Ther Drug Monit. 2004; 26 (1): 44–6. https://doi.org/10.1097/00007691-200402000-00010.
78. Dalaklioglu S. Evaluating appropriateness of digoxin, carbamazepine, valproic acid, and phenytoin usage by therapeutic drug monitoring. Clin Lab. 2013; 59 (3–4): 325–31. https://doi.org/10.7754/clin.lab.2012.120425.
79. Löscher W., Potschka H., Sisodiya S.M., Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020; 72 (3): 606–38. https://doi.org/10.1124/pr.120.019539.
80. Simon C., Stieger B., Kullak-Ublick G.A., et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand. 2007; 115 (4): 232–42. https://doi.org/10.1111/j.1600-0404.2006.00761.x.
81. van Vliet E.A., van Schaik R., Edelbroek P.M., et al. Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther. 2007; 322 (1): 141–7. https://doi.org/10.1124/jpet.107.121178.
82. Löscher W., Luna-Tortós C., Römermann K., Fedrowitz M. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des. 2011; 17 (26): 2808–28. https://doi.org/10.2174/138161211797440212.
83. Fang M., Xi Z.Q., Wu Y., Wang X.F. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses. 2011; 76 (6): 871–6. https://doi.org/10.1016/j.mehy.2011.02.039.
84. Schmidt D., Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia. 2005; 46 (6): 858–77. https://doi.org/10.1111/J.1528-1167.2005.54904.x.
85. Bethmann K., Fritschy J.M., Brandt C., Löscher W. Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis. 2008; 31 (2): 169–87. https://doi.org/10.1016/j.nbd.2008.01.005.
86. Volk H.A., Arabadzisz D., Fritschy J.M., et al. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy. Neurobiol Dis. 2006; 21 (3): 633–46. https://doi.org/10.1016/j.nbd.2005.09.006.
87. Wiebe S., Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012; 8 (12): 669–77. https://doi.org/10.1038/nrneurol.2012.181.
88. Hitiris N., Mohanraj R., Norrie J., et al. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 2007; 75 (2–3): 192–6. https://doi.org/10.1016/j.eplepsyres.2007.06.003.
89. Mckee A.C., Daneshvar D.H. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015; 127: 45–66. https://doi.org/10.1016/B978-0-444-52892-6.00004-0.
90. Rogawski M.A. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia. 2013; 54 (Suppl. 2): 33–40. https://doi.org/10.1111/epi.12182.
91. Sillanpää M., Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain. 2006; 129 (Pt 3): 617–24. https://doi.org/10.1093/brain/awh726.
92. Schmidt D.M., Löscher W.P. New developments in antiepileptic drug resistance: an integrative view. Epilepsy Curr. 2009; 9 (2): 47–52. https://doi.org/10.1111/J.1535-7511.2008.01289.x.
93. Löscher W., Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia. 2011; 52 (4): 657–78. https://doi.org/10.1111/j.1528-1167.2011.03024.x.
94. Friedman A., Heinemann U. Role of blood-brain barrier dysfunction in epileptogenesis. In: Jasper's basic mechanisms of the epilepsies. 4th ed. Bethesda (MD): National Center for Biotechnology Information; 2012: 353–61. https://doi.org/10.1093/med/9780199746545.003.0027.
95. Panina Y.S., Timechko E.E., Usoltseva A.A., et al. Biomarkers of drug resistance in temporal lobe epilepsy in adults. Metabolites. 2023; 13 (1): 83. https://doi.org/10.3390/metabo13010083.
Review
For citations:
Yakimov A.M., Timechko E.E., Paramonova A.I., Vasilieva A.A., Rybachenko F.K., Rybachenko A.D., Dmitrenko D.V. Hypotheses of development and strategies for overcoming drug resistance in epilepsy. Part I: Hypotheses of development. Epilepsy and paroxysmal conditions. 2024;16(4):375-384. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2024.210

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.