Protocol for developing an Open Base of gRAduated EEG Signals (OBRAS)
https://doi.org/10.17749/2077-8333/epi.par.con.2025.267
Abstract
Background. Artificial intelligence (AI) systems based on neural networks enabling the automatic analysis of electroencephalography (EEG) examinations, such as detecting episodes of paroxysmal activity are currently being actively developed. Large datasets are required for training neural network algorithms.
Objective: To develop a roadmap for the Open Base of Graduated EEG Signals (OBRAS) project, designed to eliminate the shortage of high-quality, annotated EEG recordings suitable for developing and training AI algorithms, as well as for creating educational programs and digital EEG atlases.
Material and methods. The project protocol was drafted, which includes the collection of native EEG signals from open sources and from clinical practice of the participants, their deidentification and structured mapping. A two-tier data organization system was proposed: i) primary grouping into folders (e.g., Normal, Epi, NonEpi) and ii) main, flexible classification using a system of tags for age, sex, examination type, pathology, presence of specific EEG patterns, etc. Eligibility criteria and technical requirements for the recordings (format, number of channels, sampling frequency) were defined.
Conclusion. The OBRAS project roadmap outlines the protocol, logical sequence of work, annotation methodology, funding model (non-profit partnership), and solutions in the areas of ethics and information security. The creation of such publicly accessible database will accelerate development of AI algorithms for automated EEG analysis. Implementation of the OBRAS project may significantly contribute to developing medical, research, and information technologies in neurophysiology.
About the Authors
A. A. IvanovRussian Federation
Alexey A. Ivanov
5 Voronin Str., Ivanovo 153032
D. V. Blinov
Russian Federation
Dmitry V. Blinov, Dr. Sci. Med., MBA
WoS ResearcherID: E-8906-2017
Scopus Author ID: 6701744871
11-13/1 Lyalin Passage, Moscow 101000;
5 bldg 1-1a 2nd Brestskaya Str., Moscow 123056;
37А bldg 1 Altufyevskoe Shosse, Moscow 127410
K. V. Voronkova
Russian Federation
Kira V. Voronkova, Dr. Sci. Med., Prof.
Scopus Author ID: 20434946200
1 Ostrovityanov Str., Moscow 117513;
2 Abrikosovskiy Passage, Moscow 119435
A. S. Petrukhin
Russian Federation
Andrey S. Petrukhin, Dr. Sci. Med., Prof.
Scopus Author ID: 7005313493
1 Ostrovityanov Str., Moscow 117513
O. V. Zaytseva
Russian Federation
Olga S. Zaytseva
2 Abrikosovskiy Passage, Moscow 119435
M. O. Abramov
Russian Federation
Mikhail О. Abramov
9 Academician Anokhin Str., Moscow 119571
References
1. Lamotkin A.I., Korabelnikov D.I., Lamotkin I.A. Artificial intelligence: basic terms and concepts, the application in healthcare and clinical medicine. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2024; 17 (3): 409–15 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.267.
2. Korabelnikov D.I., Lamotkin A.I. The effectiveness of using artificial intelligence in clinical medicine. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (1): 114–24 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.287.
3. Korabelnikov D.I., Lamotkin A.I. Artificial intelligence in oncology: global experience and future prospects. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (3): 437–47 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.302.
4. Gulshan V., Peng L., Coram M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316 (22): 2402–10. https:// doi.org/10.1001/jama.2016.17216.
5. Esteva A., Kuprel B., Novoa R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542 (7639): 115–8. https://doi.org/10.1038/nature21056.
6. Korabelnikov D.I., Lamotkin A.I. Artificial intelligence in dermatology: a comparative analysis of computer vision programs based on machine learning models. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (4): 571–81 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.340.
7. Lamotkin A.I., Korabelnikov D.I. Convolutional neural networks and transformers in skin tumor diagnostics: a comparative analysis of the efficiency of artificial intelligence models in computer vision programs. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (3): 365–75 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.327.
8. Lamotkin A.I., Korabelnikov D.I., Olisova O.Yu., Lamotkin I.A. Effectiveness of preliminary differential diagnosis of benign and malignant skin neoplasms using the Derma Onko Check artificial intelligence program. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18 (2): 261–70 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2025.294.
9. McKinney S.M., Sieniek M., Godbole V., et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577 (7788): 89–94. https://doi.org/10.1038/s41586-019-1799-6.
10. Ardila D., Kiraly A.P., Bharadwaj S., et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019; 25 (6): 954–61. https://doi.org/10.1038/s41591-019-0447-x.
11. Mironov M.B., Abramov M.O., Kondratenko V.V., et al. Artificial intelligence applied for the diagnosis of absence epilepsy with simultaneously tested patient’s consciousness level in ictal event. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2024; 16 (1): 8–17 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2024.178.
12. Tveit J., Aurlien H., Plis S., et al. Automated interpretation of clinical electroencephalograms using artificial intelligence. JAMA Neurol. 2023; 80 (8): 805–12. https://doi.org/10.1001/jamaneurol.2023.1645.
13. Ivanov A.A. Overview of current software capabilities for EEG recording and analyzing. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2023; 15 (1): 53–69 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2023.144.
14. Kleen J.K., Guterman E.L. The new era of automated electroencephalogram interpretation. JAMA Neurol. 2023; 80 (8): 777–8. https://doi.org/10.1001/jamaneurol.2023.1082.
15. Bosch-Bayard J., Galan L., Vazquez E.A., et al. Resting state healthy EEG: the first wave of the Cuban normative database. Front Neurosci. 2020; 14: 555119. https://doi.org/10.3389/fnins.2020.555119.
16. Beniczky S., Aurlien H., Brøgger J.C., et al. Standardized computerbased organized reporting of EEG: SCORE. Epilepsia. 2013; 54 (6): 1112–24. https://doi.org/10.1111/epi.12135.
17. Beniczky S., Aurlien H., Brøgger J.C., et al. Standardized computerbased organized reporting of EEG: SCORE – Second version. Clin Neurophysiol. 2017; 128 (11): 2334–46. https://doi.org/10.1016/j.clinph.2017.07.418.
18. Rutkowski J., Saab M. AI-based EEG analysis: new technology and the path to clinical adoption. Clin Neurophysiol. 2025: 179: 2110994. https://doi.org/10.1016/j.clinph.2025.2110994.
19. Shah V., von Weltin E., Lopez S., et al. The Temple University Hospital seizure detection corpus. Front Neuroinform. 2018; 12: 83. https://doi.org/10.3389/fninf.2018.00083.
20. Kemp B., Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003; 114 (9): 1755–61. https://doi.org/10.1016/s1388-2457(03)00123-8.
21. Novikova E.Yu., Ivanov A.A. 2023 IFCN & ILAE minimum recording standards for routine and sleep EEG. Applicability assessment in Russia. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2024; 16 (3): 281–90 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2024.189.
22. Guidelines for carrying out of routine EEG of Neurophysiology Expert Board of Russian League Against Epilepsy. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2016; 8 (4): 99–108 (in Russ.).
23. Jasper H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl. 1958; 10: 371–5.
24. Seeck M., Koessler L., Bast T., et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol. 2017; 128 (10): 2070–7. https://doi.org/10.1016/j.clinph.2017.06.254.
25. Sinkin M., Kvaskova N., Nogovitsyn V., et al. Translation and adaptation for the Russian language of the revised glossary of the terms most commonly used by clinical electroencephalographers and the updated proposal of the EEG report format (IFCN Revision 2017). Clin Neurophysiol Pract. 2024: 9: 138–61 (in Russ.). https://doi.org/10.1016/j.cnp.2024.01.004.
26. Lüders H., Noachtar S. Atlas and classification of electroencephalography. Saunders; 2000: 203 pp.
27. Lüders H.O., Noachtar S., Rémi J. Electroencephalography: textbook and atlas. Oxford University Press; 2024: 520 pp.
Review
For citations:
Ivanov A.A., Blinov D.V., Voronkova K.V., Petrukhin A.S., Zaytseva O.V., Abramov M.O. Protocol for developing an Open Base of gRAduated EEG Signals (OBRAS). Epilepsy and paroxysmal conditions. 2025;17(4):340-350. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.267
JATS XML

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




































