Preview

Epilepsy and paroxysmal conditions

Advanced search

CURRENT CONCEPTS OF THE ROLE OF ALTERED BLOOD-BRAIN BARRIER RESISTANCE IN THE PATHOGENESIS OF CNS DISORDERS. PART I: STRUCTURE AND FORMATION OF THE BLOOD-BRAIN BARRIER

Full Text:

Abstract

Abstract: A number of pathophysiologic manifestations can be distinguished that are characteristic of both epilepsy and other common vascular, demyelinating and degenerative central neural system (CNS) diseases. This is a consequence of neural system's endogenizing capacity that determines the possibility of its response with non-specific typical pathologic processes to various pathologies and at different levels of structural and functional organization. The current concept of the blood-brain barrier (BBB) structural and functional organization fundamentally differs from those previously suggested: by early 1980s it became recognized that the BBB represents a dynamic morphofunctional entity, formed by brain capillary endothelial cells and periendothelial structures. This reflects the accumulation of knowledge on this subject that received close attention of scientific and academic communities resulting in an increased number of fundamental and applied BBB studies. In order to realize the role of the BBB in CNS functioning in normal and pathologic settings, it is necessary to clearly understand its development during the ontogeny, as well as exogenous and endogenous factors that can lead to BBB damage ('disrupture'). This will help to verify the number of markers that allow adequate evaluation of the BBB and neural tissue condition, and also to chose a strategy for the management of patients with CNS disorders.

About the Author

D. V. Blinov
Pirogov Russian National Research Medical University, Moscow
Russian Federation


References

1. Барашнев Ю.И. Перинатальная неврология. 2001; 640 с.

2. Блинов Д.В. Иммуноферментный анализ нейроспецифических антигенов в оценке проницаемости гематоэнцефалического барьера при перинатальном гипоксически-ишемическом поражении ЦНС (клинико-экспериментальное исследование): дисс. канд. мед. наук. М. 2004; 153 с.

3. Блинов Д.В. Общность ряда нейробиологических процессов при расстройствах деятельности ЦНС. Эпилепсия и пароксизмальные состояния. 2011; 2: 28-33.

4. Блинов Д.В. Объективные методы определения тяжести и прогноза перинатального гипоксически-ишемического поражения ЦНС. Акушерство, гинекология и репродукция. 2011; 2: 5-12.

5. Блинов Д.В., Сандуковская С.И. Статистико-эпидемиологическое исследование заболеваемости неврологического профиля на примере детского стационара. Эпилепсия и пароксизмальные состояния. 2010; 4: 12-22.

6. Бредбери М. Концепция гематоэнцефалического барьера. М. 1983; 480 с.

7. Вишневский А.Г., Андреев Е.М., Трейвиш А.И.. Перспективы развития России: роль демографического фактора. ИЭПП. М. 2003; 61 с.

8. Володин Н.Н., Рогаткин С.О. Современные подходы к комплексной терапии перинатальных поражений ЦНС у новорожденных. Фарматека. 2004; 1.

9. Ганнушкина И.В. Патофизиология нарушений мозгового кровообращения. В кн. Мозг: теоретические и клинические аспекты (под ред. В.И. Покровского). М. 2003; с. 463-489.

10. Гурина О.И. Клинико-иммунохимическая оценка нарушений функций гематоэнцефалического барьера у новорожденных детей с перинатальными пораже-ниями ЦНС. ): дисс. ...канд. мед. наук. 1996; 142 с.

11. Крицкая Ю.А., Шнайдер Н.А., Ширшов Ю.А. Клинико-эпидемиологическая характеристика эпилепсии в Забайкалье. Эпилепсия и пароксизмальные состояния. 2012; 1: 23-28.

12. Крыжановский Г.Н. Общая патофизиология нервной системы. М. 1997.

13. Лайкам К.Э., Антонова О.И., Белоконная Л.А., Бурденкова Е.С., Мельник Т.А., Муханова О.А., Ржаницына Л.С., З.А. Рыжикова. Женщины и мужчины России: сб. ст. М., 2010. 283 с.

14. Майзелис М.Я. Гематоэнцефалический барьер и его регуляция. 1973; 288 с.

15. Петров С.В., Лебедев С.В., Блинов Д.В., Гурина О.И., Чехонин В.П. Иммуноферментный анализ нейроспецифических белков в СМЖ и сыворотке крови у крыс при моделировании ишемии головного мозга. Матер. XIV съезда психиатров России. М. 2005; 494.

16. Предположительная численность населения Российской Федерации до 2030 года. Статистический бюллетень. М. 2009; 235 с.

17. Рябухин И.А. Иммуноферментный анализ антител к нейроспецифическим белкам в оценке проницаемости гематоэнцефалического барьера при патологии, сопровождающейся его прорывом. дисс. ...канд. мед. наук. М. 1993.

18. Рябухин И. А., Дмитриева Т.Б., Чехонин В.П. Гематоэнцефалический барьер (ч. I). Эмбриоморфогенез, клеточная и субклеточная биология плотных контактов эндотелиоцитов. Нейрохимия. 2003; 20: 12-23.

19. Савельева Г. М. Пути снижения перинатальной заболеваемости и смертности. Вестник РОАГ. 1998; 2.

20. Суринов А.Е., Збарская И.А., Антонова О.И., Воробьева О.Д., Гончаров А.Н., Денисенко М.Б., Елизаров В.В., Иванова А.Е., Ионцев В.А., Никитина С.Ю., Орехина И.Н., Рахманинова М.В., Рязанцев С.В., Харькова Т.Л., Чудиновских О.С., Эченикэ В.Х. Демографический ежегодник России – 2009. Сб. ст. M. 2009; 557 c.

21. Федоров В.П., Ушаков И.Б., Корденко А.Н. Структурно-функциональная организация гематоэнцефалического барьера. Изв. АН России. Сер. биол. 1989; 1: 24 с.

22. Хохлов А.П., Фетисова И.Г., Подлесный А.М. Защитная реакция клеток мозга при изменении проницаемости гематоэнцефалического барьера. Вопросы мед. химии. 1993; 39 (4): 25-27.

23. Чехонин В.П., Дмитриева Т.Б., Жирков Ю.А. Иммунохимический анализ нейроспецифических антигенов. М. 2000; 416 с.

24. Чехонин В.П., Лебедев С.В., Дмитриева Т.Б., Блинов Д.В., Гурина О.И., Семенова А.В., Володин Н.Н. Иммуноферментный анализ NSE и GFAP, как критерий динамической оценки проницаемости гематоэнцефалического барьера крыс при перинатальном гипоксически-ишемическом поражении ЦНС. Бюлл. эксп. биол. мед. 2003; 136 (9): 299-303.

25. Шнайдер Н.А., Пилюгина М.С., Дмитренко Д.В., Шматова Е.Н., Ерыкалова С.А. Частота встречаемости фармакорезистентной эпилепсии в Красноярском Крае (по данным неврологического центра университетской клиники). Эпилепсия и пароксизмальные состояния. 2010; 4: 32-36.

26. Штерн Л. С. Гемато-энцефалический барьер. М. Биомедгиз. 1935.

27. Штерн Л.С. Непосредственная питательная среда органов и тканей. М. 1960; 224 с.

28. Abbott N.J. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol. 2000; 20: 131-147.

29. Abbruscato T.J., Lopez S.P., Mark K.S., Hawkins B.T., Davis T.P. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci. 2002; 91: 2525-2538.

30. Abraham C.S., Harada N., Deli M.A., Niwa M. Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke-prone spontaneously hypertensive rats.Cell. Mol. Neurobiol. 2002; 22 (4): 455-62.

31. Balabanov R., Dore-Duffy P. Role of the CNS vicrovascular pericyte in the blood-brain barrier. Journal of Neurosci. Res. 1998; 53: 637-644.

32. Ballabh P., Braun A., Nedergaard M. The blood-brain barrier: an overview structure, regulation and clinical implications. Neurobiology of Disease. 2004; 16: 1-13.

33. Bass T., Singer G., Slusser J., Liuzzi F.J. Radial glial interaction with cerebral germinal matrix capillaries in the fetal baboon. Exp. Neurol. 1992; 118: 126-132.

34. Bauer H.C., Sonnleitner U., Bauer H. et al. Dev. Brain Res. 1995; 86: 317-325.

35. Bauer H.C., Bauer H. Cell. Mol. Neurobiol. 1999; 20: 13-28.

36. Bazzoni G., Dejana E. Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis. Physiol. Rev. 2004; 84: 869-901.

37. Begley D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacology & Therapeutics. 2004; 104; 29-45.

38. Begley D.J., Bradbery M.W., Kreuter J. The Blood-bbrain Barrier and Drug Delivery to the CNS. Marcel Dekker, Inc. New York. 2000.

39. Berkovic S.F.; Scheffer I.E. Febrile seizures: genetics and relationship to other epilepsy syndromes. CuiT-Opin-Neurol. 1998; 11 (2): 129-134.

40. Bradbery M.W., Deane R. Permeability of the blood-brain barrier to lead. Neurotoxicology. 1993; 3: 1-6.

41. Braun L.D., Cornford E.M., Oldendorf W.H. Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem. 1980; 34: 147-152.

42. Brenton D.P., Gardiner R.M. Transport of L-phenylalanine and related amino acids at the ovine blood-brain barrier. J. Physiol. 1988; 402: 497-514.

43. Butt A.M., Jones H., Abbott N.J. J. Physiol. 1990; 429: 47-62.

44. Cardoso F.L., Brites D., Brito M.A. Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches. Brain Res. Review. 2010; 64: 328-363.

45. Chen Y., Swanson R.A. Astrocytes and brain injury. J. Cereb. Blood. Flow. Metab. 2003; 23 (2): 137-49.

46. Del Zoppo G.J., Hallenbeck J.M. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res. 2000; 98: 73-81.

47. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008; 14: 1581-1593.

48. Delorme P., Gayet J, Grignon G. Ultrastructural study on transcapillary exchanges in the developing telencephalon of the chicken. Brain Res. 1970; 22 (3): 269-83.

49. Díaz-Flores L., Gutiérrez R., Varela H., Rancel N., Valladares F. Microvascular pericytes: A review of their morphological and functional characteristics. Histol Histopath. 1991; 6: 269-286.

50. Dittman L., Axelsen N.H., Norgaard-Pedersen B., Bock E. Antigens in human glioblastomas and meningiomas: search for tumor and onco-foetal antigens. Estimation of S100 and GFA protein. Br. J. Cancer. 1977; 35: 135-144.

51. Dvorak H.F. Tumors: wounds that do not heal. Similarity between tumor stroma generation and wound healing. N. Engl. J. Med. 1986; 315: 1650.-1658.

52. Dziegielewska K.M., Evans C.A., Malinowska D.H., Møllgård K., Reynolds J.M., Reynolds M.L., Saunders N.R. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J. Physiol. 1979; 292: 207-231.

53. Eliasziw M., Kennedy J., Hill M.D., Buchan A.M., Barnett H.J.M. Early risk of stroke after a transient ischemic attack in patients with internal carotid artery disease. CMAJ. 2004 March 30; 170 (7): 1105-1109.

54. Farrell C.Z., Risan W. Normal and abnormal development of the blood-brain barrier. Micrisc. Res. Tech. 1994; 27 (6): 495-506.

55. Ferguson R.K., Woodbury D.M. Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid and skeletal muscle of developing rats. Exp Brain Res. 1969; 7: 181-194.

56. Fern R. Ischemia: astrocytes show their sensitive side. Progress in Brain Res. 2001; 132: 405-411.

57. Fujimoto K. Pericyte-endothelial gap junctions in developing rat cerebral capillaries: a fine structural study. Anat. Rec. 1995; 242: 562-565.

58. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S.Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell. Biol. 1993; 123; 1777-1788.

59. Gould S.J., Howard S. An immunohistochemical study of the germinal layer I the late gestation human fetal brain. Neuropathol. Appl. Neurobiol. 1987; 13: 421-437.

60. Jacobson M. Developmental neurobiology. New York. 1991.

61. Janzer R.C. The blood-brain barrier: cellular basis. J. Inherit. Metab. Dis. 1993; 12: 639-647.

62. Joffe R.T. Depression and multiple sclerosis: a potential way to understand the biology of major depressive illness. J. Psychiatry Neurosci. 2005; 30 (1): 9-10.

63. Johanson C.E. Ontogeny of the blood–brain barrier. Implications of the Blood-Brain Barrier and Its Manipulation / E.A. Neuwelt. 1989; 157-198.

64. Joo F. Minireview: regulation messendger molecules of the permiability in the cerebral microvessels. Neurobiology. 1993; 1: 3-10.

65. Joo F. Insigt into the regulation messenger molecules of the permiability of the blood-brain barrier. Micr. Res. Tech. 1994; 27: 507-515.

66. Habgood M.D., Knott G.W., Dziegielewska K.M., Saunders N.R. The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J. Physiol. 1993; 468: 73-83.

67. Hallenbeck J.M., Mechanisms of secondary brain damage in cerebral ischemia and trauma. New York. 1996; p. 231.

68. Hambleton G., Wigglesworth J.S. Origin of intraventricular haemorrage in the preterm infant. Arch. Dis. Child. 1976; 51: 651-659.

69. Herman I.M., D'Amore P.A. Microvascular pericytes contain muscle and nonmuscle actins. J. Cell Biol. 1985; 101: 43-52.

70. Hewicker-Trautwein M., Trautwein G. An immunohistochemical study of the fetal sheep neocortex and cerebellum with antibodies against nervous system-specific proteins. J. Comp. Pathol. 1993; 109 (4): 409-421.

71. Hirabayashi S., Tajima M., Yao I., Nishimura W., Mori H., Hata Y. JAM4, a Junctional Cell Adhesion Molecule Interacting with a Tight Junction Protein, MAGI-1. Molecular and Cellular Biology. 2003; 23 (12): 4267-4282.

72. Hirase T., Staddon J.M., Saitou M., Ando-Akatsuka Y., Itoh M., Furuse M., Fujimoto K., Tsukita S., Rubin L.L. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell. Sci. 1998; 110: 1603-1613.

73. Hirschi K.K., D'Amore P.A. Pericytes in the microvasculature. Cardiovasc Res. 1996; 32: 687-698.

74. Holash J.A., Noden D.M., Stewart P.A. Reevaluating the role of astrocytes in blood-brain barrier induction. Dev. Dyn. 1993; 197: 14-25.

75. Kirk J., Plumb J., Mirakhur M., McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J. Pathol. 2003; 201: 319-327.

76. Krause D., Kurz I., Dermictzel R. Cerebral pericytes a second line of deference in controlling blood-brain barrier peptide metabolism. Adv. Exp. Med. Biol. 1993; 331: 149-152.

77. Krum J.M., Kenyon K.L., Rosenstein J.M. Expression of blood–brain barrier characteristics following neuronal loss and astroglial damage after administration of anti-Thy-1 immunotoxin. Exp. Neurol. 1997; 146: 33-45.

78. Liebner S., Fischmann A., Rascher G., Duffner F., Grote E.H., Kalbacher H., Wolburg H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. (Berl.). 2000; 100: 323-331.

79. Liebner S., Kniesel U., Kalbacher H., Wolburg H. Correlation of tight junction morphology with the expression of tight junction proteins in blood–brain barrier endothelial cells. Eur. J. Cell Biol. 2000; 79: 707-717.

80. Lippoldt A., Kniesel U., Liebner S., Kalbacher H., Kirsch T., Wolburg H., Haller H. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 2000; 885: 251-261.

81. Louissaint Jr. A., Rao S., Leventhal C.,Goldman S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron. 2002; 34: 945-960.

82. Marchi N., Cavaglia M., Fazio V., Bhudia S., Hallene K., Janigro D. Peripheral markers of blood-brain barrier damage. Clinica Chimica Acta. 2004; 342: 1-12. Mark K.S., Burroughs A.R., Brown R.C., Huber J.D., Davis T.P. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am. J. Physiol. Heart. Circ. Physiol. 2004; 286: H174-H178.

83. Matter K., Balda M.S. Signalling to and from tight junctions. Nat. Rev., Mol. Cell Biol. 2003; 4: 225-236.

84. Meisenberg G., Simmons W.H. Peptides and blood-brain barrier. Life Sci. 1993; 32: 2611-2623.

85. Ment L.R., Stewart W.B., Ardito T.A., Madri J.A. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res. Dev. Brain Res. 1996; 84: 142-149.

86. Mi H., Haeberle H., Barres B.A. Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 2001; 21: 1538-1547.

87. Minagar A., Shapshakb P., Fujimurac R., Ownbyc R., Heyesd M., Eisdorferc C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. Journal of the Neurological Sciences. 2002; 202 (1-2): 13-23.

88. Morita K., Sasaki H., Fujimoto K., Furuse M., Tsukita S. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. 1999; 145: 579-588.

89. Pantoni L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc. Dis. 2002; 13 (2): 7-10.90. Pardridge W.M. Molecular biology of the blood–brain barrier. Mol. Biotechnol. 2005; 30 (1): 57-70.

90. Rakik P. Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology. 1972; 145 (1): 61-83.

91. Reynolds M.L., Evans C.A., Reynolds E.O., Saunders N.R., Durbin G.M., Wigglesworth J.S. Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev. 1979; 3: 163-186.

92. Risau W., Hallmann R., Albrecht U. Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 1986; 117: 537-545.

93. Roncali L., Nico B., Ribatti D., Bertossi M., Mancini L. Microscopical and ultrastructural investigations on the development of the blood-brain barrier in the chick embryo optic tectum. Acta Neuropathol (Berl). 1986; 70 (3-4): 193-20.

94. Rucker H.K., Wynder H.J., Thomas W.E. Cellular mechanisms of CNS pericytes. Brain Res Bull. 2000; 51: 363-369.

95. Sasaki A., Hirato J., Nakazato Y., Ishida Y. Immunohistochemical study of the early human fetal brain. Acta Neuropathol. 1988; 76: 128-134.

96. Saunders N.R. Development of the blood-brain barrier to macromolecules. The Fluids and Barriers of the Eye and Brain / M.B. Segal. 1991; 128-155.

97. Saunders N.R. Handbook of Experimental Pharmacology. 1992; 103: 328-369.

98. Saunders N.R., Habgood M.D., Dziegielewska K.M. Barrier mechanisms in the brain, II. Immature brain. Clin. Exp. Pharmacol. Physiol. 1999; 26: 85-91.

99. Schuize C., Firth J.A. Dev. Brain Res. 1992; 69: 85-96.

100. Schumacher U., Mollgård K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol. 1997; 108: 179-182.

101. Sims D.E. Diversity within pericytes. Clin. Exp. Pharmacol. Physiol. 2000; 27: 842-846.

102. Stern L., Peyrot R. Le fonctionnement de la barrière hémato-éncephalique aux divers stades de développement chez les diverses espèces animales. Compte Rendu Soc. Biol. 1927; 96: 1124-1126.

103. Stern L. et al. Le fonctionnement de la barrière hémato-éncephalique aux divers stades de développement chez les diverses espèces animales. Compte Rendu Soc. Biol. 1929; 100: 231-233.

104. Stewart P.A., Hayakawa K Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Brain Res. Dev. Brain Res. 1994; 78 (1): 25-34.

105. Szymonowicz W., Schafler K., Cussen L.J., Yu V.Y. Ultrasoundand necropsy study of periventricular haemorrhage in preterm infants. 1984; Arch. Dis. Child. 59: 637-642.

106. Volbrodt A.W., Dobrogowska, D.H. Folia Histochem. Cytobiol. 1994; 32: 63-70.

107. Vorbrodt W.A., Dobrogowska D.H. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res. Rev. 2003; 42 (3): 221-242.

108. Wakai S., Hirokawa N. Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium. Cell Tissue Res. 1981; 214 (2): 271-278.

109. Wislocki G.B. Experimental studies on fetal absorption. I. The vitally stained fetus. Contrib. Embryol. Carnegie Inst. 1920; 5: 45-52.


Review

For citations:


Blinov D.V. CURRENT CONCEPTS OF THE ROLE OF ALTERED BLOOD-BRAIN BARRIER RESISTANCE IN THE PATHOGENESIS OF CNS DISORDERS. PART I: STRUCTURE AND FORMATION OF THE BLOOD-BRAIN BARRIER. Epilepsy and paroxysmal conditions. 2013;5(3):65-75. (In Russ.)

Views: 544


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)