Epilepsy and paroxysmal conditions

Advanced search


Full Text:


The role of epilepsy in developing autism spectrum disorders (ASD) is not well understood. According to some reports, epilepsy of early childhood is often found in patients with autism of early childhood. In such children, epilepsy can progress at later periods, while the presence of both disorders in one child has a specific clinical pattern and requires specific treatment. The question whether suppression of epileptic discharges on the EEG could lead to cognitive improvement in children with ASD remains open. Likewise, the etiology of autism and its possible links to epilepsy and other pediatric disorders need more research. Here we present an overview of recent clinical studies on the proposed connection between epilepsy and ASD.

About the Authors

N. N. Maslova
FSBEI HE “Smolensk State Medical University” of Ministry of Healthcare of the Russian Federation
Russian Federation

MD, Professor, Head of the Department of Neurology and Neurosurgery, the Smolensk State Medical University. Address: ul. Krupskoy, 28, Smolensk, Russia, 214019

V. A. Skorobogatova
FSBEI HE “Smolensk State Medical University” of Ministry of Healthcare of the Russian Federation
Russian Federation

medical undergraduate, Faculty of General Medicine, the Smolensk State Medical University. Address: ul. Krupskoy, 28, Smolensk, Russia, 214019

N. V. Yur’eva
FSBEI HE “Smolensk State Medical University” of Ministry of Healthcare of the Russian Federation
Russian Federation

PhD, Assistant Professor at the Department of Neurology and Neurosurgery, the Smolensk State Medical University. Address: ul. Krupskoy, 28, Smolensk, Russia, 214019

N. E. Maslov
FSBEI HE “Smolensk State Medical University” of Ministry of Healthcare of the Russian Federation
Russian Federation

medical undergraduate, Faculty of General Medicine, the Smolensk State Medical University. Address: ul. Krupskoy, 28, Smolensk, Russia, 214019


1. Diagnostic and statistical manual of psychiatric disorders (DSM-5.) American psychiatric association. 2013.

2. Malinina E. V., Suprun S. A., Zabozlaeva I. V. Doktor.Ru (In Russian). 2012; 5: 70-74.

3. Simashkova N. V., Klyushnik T. P. Clinical and biological aspects of autism spectrum disorders [Kliniko-biologicheskie aspekty rasstroistv au-tisticheskogo spectra (In Russian)]. Moscow. 2016; 50-62.

4. Bathelt J., Astle D. E., Barnes J., Baker K., Raymond L. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability. Elsevier. 2016; 12: 655-665.

5. Hazlett H. C., Gu H., Munsell B. C., Kim S. H. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017; 542: 348-351.

6. Christensen J., Grønborg T. K., Vestergaard M. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013; 309 (16): 1696-1703.

7. Bromley R. L., Mawer G., Clayton-Smith J., Baker G. A. Liverpool and Manchester Neu-rodevelopment Group. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology. 2008; 71 (23): 1923-1924.

8. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fe-tus? Reproductive Toxicology. 2009; 28 (1): 1-10.

9. Rasalam A. D., Hailey H., Williams J. H. et al. Characteristics of fetal anticonvulsant syn-drome associated autistic disorder. Developmental Medical Child Neurology. 2005; 47 (8): 551-555.

10. Bromley R. L., Mawer G. E. et al. Liverpool and Manchester Neurodevelopment Group. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. Journal of Neurology Neurosurgery Psychiatry. 2013: 84 (6): 637-643.

11. Bittigau P., Sifringer M., Genz K. et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proceedings of the National Academy of Sciences. 2002; 99 (23): 15089-15094.

12. Sui L., Chen M. Prenatal exposure to valproic acid enhances synaptic plasticity in the me-dial prefrontal cortex and fear memories. Brain Research Bulletin. 2012; 87 (6): 556-563.

13. Walsh C. A., Morrow E. M., Rubenstein J. L. Autism and brain development. Cell. 2008; 135 (3): 396-400.

14. Gibson T. T., Poretti A. et al. Autism phenotypes in Tuberous Sclerosis Complex: diagnoctic and treatment consideration. Journal of Child Neurology. 2015; 1-6.

15. Jansen F. E., Vincken K. L., Algra A. et al. Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology. 2008; 70: 916-923.

16. Fallin M. D. Wang P. Autism Speaks; presentation, International Meeting for Autism Re-search. Baltimore. 2016.

17. Gomez M., Sampson J. R., Whittemore V. H., eds. Tuberous Sclerosis Complex. 3rd ed. Oxford. 1999.

18. Kaczorowska M., Jurkiewicz E., Domanska-Pakiela D. et al. Cerebral tuber count and its impact on mental outcome of patients with tuberous sclerosis complex. Epilepsia. 2011; 52: 22-27.

19. Humphrey A., MacLean C., Ploubidis G. B. et al. Intellectual development before and af-ter the onset of infantile spasms: a controlled prospective longitudinal study in tuberous sclerosis. Epilepsia. 2014; 55:108-116.

20. Hrdlicka M. EEG abnormalities, epilepsy and regression in autism: a review. Neuroendocrinol. Lett. 2008; 29 (4): 405-409.

21. Tuchman R., Cuccaro M., Alessandri M. Autism and epilepsy: Historical perspective. Elsevier Brain&Development. 2010; 32: 709-718.

22. Voronkova K. V., Pylaeva O. A., Kholin A. A. Vestnik epileptologii (in Russian). 2012; 12: 12-21.

23. Mukhin K. Yu., Petrukhin A. S., Glukhova L. Yu. Epilepsy: atlas of electroclinical diagnosis [Epilepsiya: atlas elektro-klinicheskoi ̆ diagnostiki (in Russian)]. Moscow. 2004; 337-340.

24. Bosl W. J., Loddenkemper T., Nelson C. A. Nonlinear EEG biomarker profiles for autism and absence epilepsy. Neuropsychiatric Electrophusiology. 2017; 3: 2-22.

25. Bosl W., Tierney A., Tager-Flusberg H., Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine. 2011; 9: 18.

26. Lehnertz K., Andrzejak R. G. et al. Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention. Journal of clinical neurology. 2001; 18 (3): 209-222.

27. Rodenas-Cuadrano P., Joses H., Vernes S. C. Shining a light on CNTNAP2: complex functions to complex disorders. European journal of human genetics. 2013; 22 (2): 1- 8.

28. Rodenas-Cuadrano P., Petrafusa N., Francavilla T., La Neve A. et al. Characterisation of CASPR2 deficiency disorder – a syndrome involving autism, epilepsy and language impairment. BMC Medical Genetics. 2016; 17: 1-6.

29. Yakupova L. P., Simashkova N. V. Vestnik Soveta molodykh ucheenykh i spetsialistov Chelyabinskoi ̆ oblasti (in Russian). 2016; 2: 134-137.

30. Schopler E., Reichler R., De Vellis R., Daly K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Devel. Dis. l980; 10: 91-103.

31. Findji F., Harrison-Covello A., Lairy G. C. Long duration EEG studies in the case of a psychotic child. Electroencephalogr Clin Neurophysiol. 1979; 46 (5): 592- 600.

32. Boutros Nash N., Renee Lajiness-O’Neill, Zillgitt Andrew et al. EEG changes associated with autistic spectrum disorders. Neuropsychiatric Electrophysiology. 2015; 3: 8-20.

33. Frye R. E., Butler I., Strickland D. et al. Electroencephalogram discharges in atypical cognitive development. Journal of Child Neurology. 2010; 5: 556-566.

34. Sanchez Fernandez I., Loddenkemper T., Galanopoulou A. S., Moshe S. L. Should epileptiform discharges be treated? Epilepsia. 2015; 56 (10): 1492-504.

35. Galanopoulou A. S., Bojko A., Lado F. et al. The spectrum of neuropsychiatric abnormali-ties associated with electrical status epilepticus in sleep. Brain Dev. 2000; 22: 279-295.

36. Patry G., Lyagoubi S., Tassinari C. A. Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases. Arch Neurol. 1971; 24: 242-252.

37. Sánchez Fernández I., Peters J. M., Hadjiloizou S. et al. Clinical staging and electroen-cephalographic evolution of continuous spikes and waves during sleep. Epilepsia. 2012; 53: 1185-1195.

38. Ronen G. M., Richards J. E., Cunningham C. et al. Can sodium valproate improve learning in children with epileptiform bursts but without clinical seizures? Dev Med Child Neurol. 2000; 42: 751-755.

39. Catarino A., Churches O., Baron-Cohen S., Andrade A. Atypical EEG complexity in au-tism spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol. 2011; 122 (12): 75-83.

40. Chu-Shore C.J., Major P., Camposano S. et al. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010; 51: 1236-1241.

41. Mintz M., Legoff D., Scornaienchi J. et al. The underrecognized epilepsy spectrum: the effects of levetiracetam on neuropsychological functioning in relation to subclinical spike pro-duction. J Child Neurol. 2009; 24: 807-815.


For citations:

Maslova N.N., Skorobogatova V.A., Yur’eva N.V., Maslov N.E. CONNECTION BETWEEN EPILEPSY AND AUTISM SPECTRUM DISORDER. Epilepsy and paroxysmal conditions. 2017;9(3):54-63. (In Russ.)

Views: 667

ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)