Pathogenesis of drug resistant epilepsy
https://doi.org/10.17749/2077-8333.2019.11.1.79-87
Abstract
Pharmacotherapy is the first-line treatment modality for epilepsy. However, in 20-40% of patients, epilepsy is resistant to pharmacotherapy. These numbers have not changed for decades despite the development and use of antiepileptic drugs with novel mechanisms of action. Drug-resistant epilepsy is now considered a separate pathophysiologic and clinical entity. The existing hypotheses on its pathogenesis could be divided in two groups. Firstly, drug-resistance might be caused by an abnormal pharmacokinetics or pharmacodynamics of antiepileptic drugs as a result of congenital or acquired dysfunction of the transporter or receptor proteins. Secondly, it might be a consequence of inherent features of epilepsy per se, such as the so-called “intrinsic severity” or some disorder of the connectome. Taking into account the complexity of this phenomenon, the issue of drug resistance continues to remain in the focus of the current research efforts.
About the Authors
S. M. MalyshevRussian Federation
MD, PhD student, Department of Neurology and Psychiatry, Institute of Medical Education
2 Akkuratova Str., St Petersburg 197341, Russia
Scopus Author ID: 57192810951. Researcher ID: N-7251-2016.
T. M. Alekseeva
Russian Federation
Professor, Head of the Department of Neurology and Psychiatry, Institute of Medical Education
2 Akkuratova Str., St Petersburg 197341, Russia
Scopus Author ID: 57200808136. Researcher ID: S-8806-2017
W. A. Khachatryan
Russian Federation
Professor, Scientific Supervisor at the Department of Neurosurgery for Children # 7
2 Akkuratova Str., St Petersburg 197341, Russia
Scopus Author ID: 55633841500. Researcher ID: G-4002-2018
M. M. Galagudza
Russian Federation
Corresponding Member of the RAS, Head of the Institute of Experimental Medicine
2 Akkuratova Str., St Petersburg 197341, Russia
Scopus Author ID: 6507925726. Researcher ID: C-8479-2011
References
1. Mil’chakova L. E. Epidemiology of epilepsy in certain subjects of the Russian Federation: epidemiology, clinical picture, social aspects, possibilities for optimizing pharmacotherapy. MD diss. (in Russ.). Moscow. 2008; 32 s.
2. Fiest K. M., Sauro K. M., Wiebe S., et al. Prevalence and incidence of epi-lepsy: A systematic review and meta-analysis of international studies. Neurology. 2017; 88 (3): 296-303. DOI: 10.1212/WNL.0000000000003509.
3. Pharmacological group – Antiepileptic drugs. Radar: Register of medicines of Russia (in Russ.). [Electronic resource] URL: https://www.rlsnet.ru/fg_index_id_289.htm. Accessed: 29.07.2018.
4. Kwan P., Arzimanoglou A., Berg A. T., et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51 (6): 1069-1077. DOI: 10.1111/j.1528-1167.2009.02397.x
5. Kwan P., Brodie M. J. Early identification of refractory epilepsy. N Engl J Med. 2000; 342: 314-319. DOI: 10.1056/NEJM200002033420503.
6. Sander J. W. A. S. Some aspects of prognosis in the epilepsies: a review. Epilepsia. 1993; 34 (6): 1007-1016. DOI: 10.1111/j.1528-1157.1993.tb02126.x.
7. Chen Z., Brodie M. J., Liew D., et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurol. 2018; 75 (3): 279-286. DOI: 10.1001/jamaneurol.2017.3949.
8. Gowers W. R. Epilepsy and other chronic convulsive diseases: their caus-es, symptoms, & treatment. London. 1881. 354 p.
9. Coatsworth J. J. Studies on the Clinical Efficacy of Marketed Antiepilep-tic Drugs. NINDS Monograph # 12. Washington (DC): US Government Printing Office. 1971.
10. Rodin E. A. Medical and social prognosis in epilepsy. Epilepsia. 1972; 13 (1): 121-131. DOI: 10.1111/j.1528-1157.1972.tb04559.x.
11. Annegers J. F., Hauser W. A., Elveback L. R. Remission of seizures and relapse in patients with epilepsy. Epilepsia. 1979; 20 (6): 729-737. DOI: 10.1111/j.1528-1157.1979.tb04857.x.
12. Goodridge D. M., Shorvon S. D. Epileptic seizures in a population of 6000. II: Treatment and prognosis. Br Med J (Clin Res Ed). 1983; 287 (6393): 645-647.
13. Cockerell O. C., Johnson A. L., Sander J. W., et al. Prognosis of epilepsy: a review and further analysis of the first nine years of the British National General Practice Study of Epilepsy, a prospective population-based study. Epilepsia. 1997; 38 (1): 31-46. DOI: 10.1111/j.1528-1157.1997.tb01075.x.
14. Sillanpää M., Schmidt D. Natural history of treated childhood-onset epi-lepsy: prospective, long-term population-based study. Brain. 2006; 129: 617-624. DOI: 10.1093/brain/awh726.
15. Schiller Y., Najjar Y. Quantifying the response to antiepileptic drugs: ef-fect of past treatment history. Neurology. 2008; 70 (1): 54-65. DOI: 10.1212/01.wnl.0000286959.22040.6e.
16. Karlov V. A. Epilepsy in children and adults, women and men (in Russ.). Moscow. 2010. 720 s.
17. Asatryan E. A., Abramov K. B., Tadevosyan A. R. et al. Vestnik nevrologii, psihiatrii i neyrohirurgii (in Russ.). 2017; (3): 36-48.
18. Schmidt D., Sillanpää M. Evidence-based review on the natural history of the epilepsies. Curr Opin Neurol. 2012; 25 (2): 159-163. DOI: 10.1097/WCO.0b013e3283507e73.
19. Geerts A., Brouwer O., Stroink H. Onset of intractability and its course over time: the Dutch study of epilepsy in childhood. Epilepsia. 2012; 53 (4): 741-751. DOI: 10.1111/j.1528-1167.2012.03429.x.
20. Choi H., Hayat M. J., Zhang R., et al. Drug-resistant epilepsy in adults: Outcome trajectories after failure of two medications. Epilepsia. 2016; 57 (7): 1152-1160. DOI: 10.1111/epi.13406.
21. Muhin K. Yu., Pylaeva O. A., Gluhova L. Yu. et al. Russkiy zhurnal detskoy nevrologii (in Russ.). 2014; 9 (4): 30-49.
22. Tishler D. M., Weinberg K. I., Hinton D. R. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995; 36 (1): 1-6. DOI: 10.1111/j.1528-1157.1995.tb01657.x.
23. Yakusheva E. N., Chernyh I. V., Schul’kin A. V. et al. Uspekhi fiziologicheskih nauk (in Russ.). 2014; 45 (4): 90-98.
24. Kwan P., Li H. M., Al-Jufairi E., et al. Association between temporal lobe P-glycoprotein expression and seizure recurrence after surgery for pharmacoresistant temporal lobe epilepsy. Neurobiol Dis. 2010; 39 (2): 192-197. DOI: 10.1016/j.nbd.2010.04.006.
25. Feldmann M., Asselin M. C., Liu J. et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013; 12 (8): 777-785. DOI: 10.1016/S1474-4422(13)70109-1.
26. Brandt C., Bethmann K., Gastens A. M., et al. The multidrug transporter hypothesis of drug resistance in epilepsy: Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis. 2006; 24 (1): 202-211. DOI: 10.1016/j.nbd.2006.06.014.
27. Chouchi M., Kaabachi W., Klaa H., et al. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol. 2017; 17 (1): 32. DOI: 10.1186/s12883-017-0801-x.
28. Lv R. J., Shao X. Q., Cui T., et al. Significance of MDR1 gene C3435T polymorphism in predicting childhood refractory epilepsy. Epilepsy Res. 2017; 132: 21-28. DOI: 10.1016/j.eplepsyres.2017.02.010.
29. Zhang C., Kwan P., Zuo Z., Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012; 64 (10): 930-942. DOI: 10.1016/j.addr.2011.12.003.
30. Potschka H. Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches. Pharmacogenomics. 2010; 11 (10): 1427-1438. DOI: 10.2217/pgs.10.126.
31. Miller D. S. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015; 97 (4): 395-403. DOI: 10.1002/cpt.64.
32. Lazarowski A., Czornyj L., Lubienieki F., et al. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory ep-ilepsy. Epilepsia. 2007; 48 (5): 140-149. DOI: 10.1111/j.1528-1167.2007.01302.x.
33. Beck H. Plasticity of antiepileptic drug targets. Epilepsia. 2007; 48 (1): 14-18. DOI: 10.1111/j.1528-1167.2007.00994.x.
34. Remy S., Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006; 129 (1): 18-35. DOI: 10.1093/brain/awh682.
35. Haerian B. S., Baum L., Kwan P., et al. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics. 2013; 14 (10): 1153-1166. DOI: 10.2217/pgs.13.104.
36. Abe T., Seo T., Ishitsu T., et al. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol. 2008; 66: 304-307. DOI: 10.1111/j.1365-2125.2008.03203.x.
37. Kwan P., Poon W. S., Ng H. K., et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics. 2008; 18 (11): 989-998.
38. Parker D., Sanders E. J., Burghardt K. J. Pharmacogenetics of antiepileptic drugs: A brief review. Ment Health Clin. 2016; 6 (1): 28-34. DOI: 10.9740/mhc.2016.01.028.
39. Joshi S., Kapur J. GABAA receptor plasticity during status epilepticus. In: Jasper’s Basic Mechanisms of the Epilepsies. Edited by Noebels J. B., Avoli M., Rogawski M. A., et al. 4th edition. New York (US): Oxford University Press, 2012. 1199 p.
40. Rogawski M. A. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia. 2013; 54 (2): 33-40. DOI: 10.1111/epi.12182.
41. Mohanraj R., Brodie M. J. Outcomes of newly diagnosed idiopathic gen-eralized epilepsy syndromes in a non-pediatric setting. Acta Neurol. Scand. 2007; 115 (3): 204-208. DOI: 10.1111/j.1600-0404.2006.00791.x.
42. Szaflarski J. P., Lindsell C. J., Zakaria T., et al. Seizure control in patients with idiopathic generalized epilepsies: EEG determinants of medication response. Epilepsy Behav. 2010; 17 (4): 525-530. DOI: 10.1016/j.yebeh.2010.02.005.
43. Stephen L. J., Kwan P., Brodie M. J. Does the cause of localisationrelated epilepsy influence the response to antiepileptic drug treatment? Epilepsia. 2001; 42 (3): 357-362. DOI: 10.1046/j.1528-1157.2001.29000.x.
44. Pohlen M. S., Jin J., Tobias R. S., et al. Pharmacoresistance with newer anti-epileptic drugs in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res. 2017; 137: 56-60. DOI: 10.1016/j.eplepsyres.2017.09.012.
45. Bonnett L. J., Tudur Smith C., Donegan S., et al. Treatment outcome after failure of a first antiepileptic drug. Neurology. 2014; 83 (6): 552-560. DOI: 10.1212/WNL.0000000000000673.
46. Xia L., Ou S., Pan S. Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy as a predictor of long-term outcome. Front Neurol. 2017; 8: 658. DOI: 10.3389/fneur.2017.00658.
47. Mohanraj R., Brodie M. J. Early predictors of outcome in newly diag-nosed epilepsy. Seizure. 2013; 22 (5): 333-344. DOI: 10.1016/j.seizure.2013.02.002.
48. Wassenaar M., Leijten F. S., Egberts T. C., et al. Prognostic factors for medically intractable epilepsy: a systematic review. Epilepsy Res. 2013; 106 (3): 301-310. DOI: 10.1016/j.eplepsyres.2013.06.013.
49. Huang L., Li S., He D., et al. A predictive risk model for medical intracta-bility in epilepsy. Epilepsy Behav. 2014; 37: 282-286. DOI: 10.1016/j.yebeh.2014.07.002.
50. Rogawski M. A., Johnson M. R. Intrinsic severity as a determinant of an-tiepileptic drug refractoriness. Epilepsy Curr. 2008; 8 (5): 127-130. DOI: 10.1111/j.1535-7511.2008.00272.x.
51. Gleichgerrcht E., Kocher M., Bonilha L. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy. Epilepsia. 2015; 56 (11): 1660-1668. DOI: 10.1111/epi.13133.
52. Kramer M. A., Cash S. S. Epilepsy as a disorder of cortical network or-ganization. Neuroscientist. 2012; 18 (4): 360-372. DOI: 10.1177/1073858411422754.
53. Bernhardt B. C., Bonilha L, Gross D. W. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 2015; 50: 162-170. DOI: 10.1016/j.yebeh.2015.06.005.
54. Fang M., Xi Z. Q., Wu Y., et al. A new hypothesis of drug refractory epi-lepsy: neural network hypothesis. Med Hypotheses. 2011; 76: 871-876. DOI: 10.1016/j.mehy.2011.02.039.
55. Bekhtereva N. P., Kambarova D. K., Pozdeev V. K. Sustainable pathological condition in diseases of the brain (in Russ.). Leningrad. 1978. 240 s.
56. Okudzhava V. M. The main neurophysiological mechanisms of epileptic activity (in Russ.). Tbilisi, 1969. 226 s.
57. Karlov V. A. Epilepsiya i paroksizmal’nye sostoyaniya / Epilepsy and paroxysmal conditions (in Russ.). 2017; 9 (4): 76-85. DOI: 0.17749/2077-8333.2017.9.4.076-085.
58. Kryzhanovskiy G. N. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova (in Russ.). 2009; 109 (1): 4-9.
59. Khachatryan V. A., Mamathanov M. R., Shershever A. S. et al. Nonspecific methods of surgical treatment of epilepsy: a collective monograph (in Russ.). Tyumen. 2016. 544 s.
60. Khachatryan V. A., Asatryan E. A., Mamathanov M. R. Neyrohirurgiya i nevrologiya detskogo vozrasta (in Russ.). 2014; (2): 53-67.
61. Shlyahto E. V. Translyatsionnaya meditsina (in Russ.). 2014; (1): 5-18. DOI: 10.18705/2311-4495-2014-0-1-13-22.
Review
For citations:
Malyshev S.M., Alekseeva T.M., Khachatryan W.A., Galagudza M.M. Pathogenesis of drug resistant epilepsy. Epilepsy and paroxysmal conditions. 2019;11(1):79-87. (In Russ.) https://doi.org/10.17749/2077-8333.2019.11.1.79-87

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.