Interpretation of electroencephalography in infants
https://doi.org/10.17749/2077-8333.2020.12.1.9-25
Abstract
Aim: Based on published reports and our own observations, we aimed to assign the graphical elements of EEG into normal and abnormal groups and then identify up to five main graphic elements in each group to facilitate visual analysis and interpretation of EEG in young children.
Materials and methods. We searched for the relevant sources in the Medline and Medscape databases using the following keywords: «neonatal EEG», «neonatal seizures», «theta burst», «delta brushes», «trace discontinue», «burst-suppression», hypsarrhythmia», etc. Our own research was conducted using an Encephalan-EEGR-19/26 encephalograph equipped with children size gold cup electrodes with a diameter of 0.6 cm. Encephalograms were recorded from 10 electrodes according to the international “10-20” system.
Results and discussion. In early childhood EEGs, two large groups of EEG graphic elements can be discerned: the likely normative graphic elements and patterns of pediatric EEG (normal patterns) and the likely non-normative (abnormal) graphic elements and patterns of pediatric EEG. In the likely normative group, the main features are represented by: theta bursts, delta brushes, the “intermittent EEG curve” pattern, the occipital theta rhythm, and slow-sleep waves. In the likely non-normative group, those are: paroxysmal EEG graphic elements, asynchronous EEG patterns, spike-wave discharges, 3 Hz peak waves, hypsarrhythmia, burst-suppression pattern, rolandic occipital spikes, and a slowing rhythm pattern.
Conclusion. Along with the numerous attempts to characterize the age-dependent graphic elements at an early age, there are few reports concerning older children and adults. Here we try to overcome this discrepancy by identifying two large groups of graphic elements in EEG that are similar between infants and children of an older age. Such an approach may contribute to a better understanding of normal and pathological ontogenesis.
Keywords
About the Authors
A. G. KoshchavtsevRussian Federation
MD, PhD, Assistant Professor, Department of Psychiatry and Narcology,
2 Litovskay Str., Saint-Petersburg 194100, Russia
S. V. Grechanyi
Russian Federation
MD, Dr Sci Med, Assistant professor, Head of the Department of Psychiatry and Narcology,
2 Litovskay Str., Saint-Petersburg 194100, Russia
References
1. Hellstom-Westas L., S de Vries L., Rosen I. Atlas of Amplitudeintegrated EEGs in the newborn. Second Edition. Informa UK Ltd., 2008. – P.187.
2. Kissin M.Ya. Clinical epileptology: a guide. Moscow. 2011; 256 s. (in Russ.).
3. Stroganova T.A., Degtyareva M.G., Volodin N.N. Electroencephalography in Neonatology: A Guide for Physicians. Moscow. 2005; 279 s. (in Russ.).
4. Zenkov L.R. Clinical electroencephalography (with elements of epileptology). A guide for doctors. Moscow. 2004; 368 s. (in Russ.).
5. Ponyatishin A.E., Pal’chik A.B. Electroencephalography in neonatal neurology. SPb. 2006; 120 s. (in Russ.).
6. Le Bihannic A., Beauvais K., Busnel A., de Barace C., Furby A. Prognostic value of EEG in very premature newborns. Arch. Dis. Child Fetal Neonatal. Mar 2012; 97: F106-9.
7. Bye A. Neonate with benign familial neonatal convulsions: recorded generalized and focal seizures. Pediatr. Neurol. 1994; 10: 164.
8. Nunes M.L., Da Costa J.C., Moura-Ribeiro M.V. Polysomnographic quantification of bioelectrical maturation in preterm and fullterm newborns at matched conceptional ages. Electroencephalogr. Clin. Neurophysiol. 1997; 102: 186.
9. Biagioni E., Bartalena L., Boldrini A. et al. Electroencephalography in infants with periventricular leukomalacia: prognostic features at preterm and term age. J. Child. Neurol. 2000; 15: 1.
10. Grigg-Damberger M., Gozal D., Marcus C.L. et al. The visual scoring of sleep and arousal in infants and children. J. Clin. Sleep. Med. 2007; 3: 201.
11. Kellaway P. An orderly approach to visual analysis: elements of the normal EEG and their characteristics in children and adults. p. 100. In Ebersole J.S., Pedley T.A. (eds) Current Practice of Clinical Electroencephalography. 3rd Ed. Lippincott Williams & Wilkins, Philadelphia, 2003.
12. Silbert P.L., Radhakrishnan K., Johnson J. et al. The significance of the phi rhythm. Electroencephalogr. Clin. Neurophysiol. 1995; 95: 71.
13. North K., Ouvrier. R., Nugent. M. Pseudoseizures caused by hyperventilation resembling absence epilepsy. J. Child Neurol. 1990; 5: 288.
14. Doose H., Waltz S. Photosensitivity – genetics and clinical significance. Neuropediatrics. 1993; 24: 249.
15. Steinlein O., Anokhin A., Yping M. et al. Localization of a gene for the human low-voltage EEG on 20q and genetic heterogeneity. Genomics. 1992; 12: 69.
16. Doose H., Castiglione E., Waltz S. Parental generalized EEG alpha activity predisposes to spike wave discharges in offspring. Hum. Genet. 1995; 96: 695.
17. Task Force for the Determination of Brain Death in Children: Guidelines for the determination of brain death in children. Ann. Neurol. 1987; 21: 616.
18. Douglass L.M., Wu J.Y., Rosman N.P. et al. Burst suppression electroencephalogram pattern in the newborn: predicting the outcome. J. Child. Neurol. 2002; 17: 403.
19. Biagioni E., Bartalena L., Boldrini A. et al. Constantly discontinuous EEG patterns in full-term neonates with hypoxicischaemic encephalopathy. Clin. Neurophysiol. 1999; 110: 1510.
20. Andre M., Lamblin M.D., d’Allest A.M. et al. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol. Clin. 2010; 40: 59.
21. Holmes G., Rowe J., Hafford J. et al. Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr. Clin. Neurophysiol. 1982; 53: 60.
22. Mariani E., Scelsa B., Pogliani L. et al. Prognostic value of electroencephalograms in asphyxiated newborns treated with hypothermia. Pediatr. Neurol. 20084 39: 317.
23. Vecchierini M.F., Andre M., d’Allest A.M. Normal EEG of premature infants born between 24 and 30 weeks gestational age: terminology, definitions and maturation aspects. Neurophysiol. Clin. 2007; 37: 311.
24. Holmes G.L., Lombroso C.T. Prognostic value of background patterns in the neonatal EEG. J. Clin. Europhysiol. 1993; 10: 323.
25. Yamatogi Y., Ohtahara S. Severe epilepsy with multiple independent spike foci. J. Clin. Neurophysiol. 2003; 20: 442.
26. Scher M.S., Bova J.M., Dokianakis S.G. et al. Positive temporal sharp waves on EEG recordings of healthy neonates: a benign pattern of dysmaturity in preterm infants at postconceptional term ages. Electroencephalogr. Clin. Neurophysiol. 1994; 90: 173.
27. Baud O., d’Allest A.M., Lacaze-Masmonteil T. et al. The early diagnosis of periventricular leukomalacia in premature infants with positive rolandic sharp waves on serial electroencephalography. J. Pediatr. 1998; 132: 813.
28. Marret S., Parain D., Me´nard J. et al. Prognostic value of neonatal electroencephalography in premature newborns less than 33 weeks of gestational age. Electroencephalogr. Clin. Neurophysiol. 1997; 102: 178.
29. Silvestri-Hobson R. C. Abnormal Neonatal EEG. 2016 Aug 18. [Medline].
30. Toth C., Harder S., Yager J. Neonatal herpes encephalitis: a case series and review of clinical presentation. Can. J. Neurol. Sci. 2003; 30: 36.
31. Vecchierini-Blineau M.F., Nogues B., Louvet S. et al. Positive temporal sharp waves in electroencephalograms of the premature newborn. Neurophysiol. Clin. 1996; 26: 350.
32. Scher M.S., Beggarly M. Clinical significance of focal periodic discharges in neonates. J. Child. Neurol. 1989; 4: 175.
33. Scher M.S., Johnson M.W., Holditch-Davis D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks’ postconceptional age. Pediatr Res. 2005 Jun; 57 (6): 879-82.
34. Despotovic I., Cherian P.J., De Vos M., Hallez H., Deburchgraeve W., Govaert P. et al. Relationship of EEG sources of neonatal seizures to acute perinatal brain lesions seen on MRI: A pilot study. Hum. Brain. Mapp. 2012 Apr 21.
35. Glass H.C., Shellhaas R.A., Wusthoff C.J., Chang T., Abend N.S., Chu C.J. et al. Contemporary Profile of Seizures in Neonates: A Prospective Cohort Study. J. Pediatr. 2016 Jul; 174: 98-103.
36. Fomina M.Yu., Melashenko T.V., Pavlova O.I. Neonatal’nye sudorogi u donoshennykh novorozhdennykh: kliniko-elektrofiziologicheskie osobennosti. Pediatr. 2018; 9 (5): 13-20.
37. Scher M.S. Controversies regarding neonatal seizure recognition. Epileptic Disord. 2002; 4: 139.
38. Pisani F., Copioli C., Di Gioia C. et al. Neonatal seizures: relation of ictal video-electroencephalography (EEG) findings with neurodevelopmental outcome. J. Child Neurol. 2008; 23: 394.
39. Hirsch E., Velez A., Sellal F. et al. Electroclinical signs of benign neonatal familial convulsions. Ann. Neurol. 1993; 34: 835.
40. Khan R., Nunes M., Garcias da Silva L. et al. Predictive value of sequential electroencephalogram (EEG) in neonates with seizures and its relation to neurological outcome. J. Child. Neurol. 2008; 23: 144.
41. Clancy R. Interictal sharp EEG transients in neonatal seizures. J. Child Neurol. 1989; 4: 30.
42. Ortibus L., Sum J., Hahn J. Predictive value of EEG for outcome and epilepsy following neonatal seizures. Electroencephalogr. Clin. Neurophysiol. 1996; 98: 175.
43. Pisani F., Piccolo B., Cantalupo G., Copioli C., Fusco C., Pelosi A. et al. Neonatal seizures and post-neonatal epilepsy: a seven-year follow-up study. Pediatr. Res. 2012 May 11.
44. Oliveira A., Nunes M., Haertel L. et al. Duration of rhythmic EEG patterns in neonates: new evidence forclinical and prognostic significance of brief rhythmic discharges. Clin. Neurophysiol. 2000; 111: 1646.
45. Bouma P.A., Westendorp R.G., Van Dijk J.G. et al. The outcome of absence epilepsy: a meta-analysis. Neurology. 1996; 47: 802.
46. Callenbach P.M., Bouma P.A., Geerts A.T. et al. Long-term outcome of childhood absence epilepsy: Dutch Study of Epilepsy in Childhood. Epilepsy Res. 2009; 83: 249.
47. Panayiotopoulos C., Obeid T., Waheed G. Differentiation of typical absence seizures in epileptic syndromes. Brain. 1989; 112: 1039.
48. Sadleir L., Scheffer I., Smith S. et al. EEG features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state. Epilepsia. 2009; 50: 1572.
49. Tovia E., Goldberg-Stern H., Shahar E. et al. Outcome of children with juvenile absence epilepsy. J .Child. Neurol. 2006; 21: 766.
50. Berg A.T., Berkovic S.F., Brodie M.J. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010; 51: 676.
51. Arzimanoglou A., French J., Blume W.T. et al. Lennox– Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol. 2009; 8: 82.
52. Panayiotopoulos C.P., Michael M., Sanders S. et al. Benign childhood focal epilepsies: assessment of established and newly recognized syndromes. Brain. 2008; 131: 2264.
53. Gregory D.L., Wong P.K. Clinical relevance of a dipole field in rolandic spikes. Epilepsia. 1992; 33: 36.
54. Minami T., Gondo K., Yamamoto T. et al. Magnetoencephalographic analysis of rolandic discharges in benign childhood epilepsy. Ann. Neurol. 1996; 39: 326.
55. Gregory D.L., Wong P.K. Clinical relevance of a dipole field in rolandic spikes. Epilepsia. 1992; 33: 36.
56. Okubo Y., Matsuura M., Asai T. et al. Epileptiform EEG discharges in healthy children: prevalence, emotional and behavioral correlates, and genetic influences. Epilepsia. 1994; 35: 832.
57. Massa R., de Saint-Martin A., Carcangiu R. et al. EEG criteria predictive of complicated evolution in idiopathic rolandic epilepsy. Neurology. 2001; 57: 1071.
58. Ferrie C.D., Beaumanoir A., Guerrini R. et al. Early-onset benign occipital seizure susceptibility syndrome. Epilepsia. 1997; 38: 285.
59. Glaze D.G. Neurophysiology of Rett syndrome. J. Child Neurol. 2005; 20: 740.
60. Korff C.M., Kelley K.R., Nordli D.R. Jr. Notched delta, phenotype, and Angelman syndrome. J. Clin. Neurophysiol. 2005; 22: 238.
61. Guerrini R., De Lorey T., Bonanni P. et al. Cortical myoclonus in Angelman syndrome. Ann. Neurol. 1996; 40: 39.
62. Nordli D.R., Moshe S.L., Shinnar S. The role of EEG in febrile status epilepticus (FSE). Brain. Dev. 2010; 32: 37.
63. So N., Berkovic S., Andermann F. et al. Myoclonus epilepsy and ragged-red fibers (MERRF). Electrophysiological studies and comparisons with other progressive myoclonus epilepsies. Brain. 1989; 112: 1261.
64. Harding B.N. Progressive neuronal degeneration of childhood with liver disease (Alpers-Huttenlocher syndrome): a personal review. J. Child. Neurol. 1990; 5: 273.
65. Ferrari G., Lamantea E., Donati A. et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gamma A. Brain. 2005; 128: 723.
66. Wolf N.I., Rahman S., Schmitt B. et al. Status epilepticus in children with Alpers’ disease caused by POLG1 mutations: EEG and MRI features. Epilepsia. 2009; 50: 1596.
67. Pal’chik A.B., Ponyatishin A.E. Non-epileptic paroxysms in infants. Moscow. 2015; 136 s. (In Russ).
Review
For citations:
Koshchavtsev A.G., Grechanyi S.V. Interpretation of electroencephalography in infants. Epilepsy and paroxysmal conditions. 2020;12(1):9-25. (In Russ.) https://doi.org/10.17749/2077-8333.2020.12.1.9-25

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.