Preview

Epilepsy and paroxysmal conditions

Advanced search

MRI diagnosis of cortical dysplasia in the immature brain

https://doi.org/10.17749/2077-8333.2020.12.1.36-50

Full Text:

Abstract

Introduction. Cortical dysplasias (CDs) encompass a wide variety of disorders that in most cases lead to epilepsy, especially in infants and young children. MRI diagnosis of CDs is a major part of presurgical examination of pediatric patients with resistant focal epilepsy.

Aim. To identify MR markers of CD in the immature brain and develop an MRI protocol for early diagnosis of CDs.

Materials and methods. Children aged <2 y.o. (total 128) diagnosed with focal epilepsy were examined over 2017-2019. All MRI scans were performed using the GE 3 T system (General Electric, USA) in the standard MR sequences including T2WI FSE, T1 SE, FLAIR, DWI, SWAN, and FSPGR BRAVO supported with anesthesiological assistance. Аll patients were divided into 3 groups according to the degree of brain maturity; of those, 28 patients had MR signs of CD.

Results. The rate of detection of small-size cortical malformations, such as nodular heterotopies or focal cortical dysplasias was significantly higher in groups of patients whose brains (according to MR images) were at the infantile or adult phases of myelination. In children with the isointensive phase myelination, only large cortical dysplasias could be identified. In the first phase, the focal malformations had low amplitude signals in T2-weighted images and high amplitude signals in T1, unlike those in adult patients. In the isointensive phase, the quality of visualization was significantly reduced and provided poor diagnostic information.

Conclusion. The results confirm the diagnostic significance of early (before age of 5 months) MRI testing in cases with suspected CD-associated focal epilepsy. However, at the period between 5 and 12 months of age, MR imaging was ineffective for CD diagnosing. Later, in the period from 12 to 15 months, the MRI ability to identify the CDs gradually increased. We consider the standard T2 weighted images with high TR values, the most effective MR modality for diagnosing CDs in young children.

About the Authors

M. V. Polyanskaya
Pirogov Russian National Research Medical University
Russian Federation

MD, Senior Laboratory Assistant, Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital

1 Ostrovityanova Str., Moscow 117997, Russia



A. A. Demushkina
Pirogov Russian National Research Medical University
Russian Federation

MD, PhD, Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



F. A. Kostylev
Pirogov Russian National Research Medical University
Russian Federation

MD, Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



F. A. Kurbanova
Pirogov Russian National Research Medical University
Russian Federation

MD, Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



I. G. Vasilyev
Pirogov Russian National Research Medical University
Russian Federation

MD, Neurosurgeon, Department of Neurosurgery, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



V. A. Chadaev
Pirogov Russian National Research Medical University
Russian Federation

MD, PhD, Neurologist, Department of Neurosurgery, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



N. N. Zavadenko
Pirogov Russian National Research Medical University
Russian Federation

MD, Dr Sci Med, Professor & Head, Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics,

1 Ostrovityanova Str., Moscow 117997, Russia

RSCI Author ID: 86405; Scopus Author ID: 7004071775



A. A. Alikhanov
Pirogov Russian National Research Medical University
Russian Federation

MD, Dr Sci Med, Professor & Head, Department of Diagnostic Radiology, Children’s Clinical Hospital,

1 Ostrovityanova Str., Moscow 117997, Russia



References

1. Leventer R.J., Phelan E.M., Coleman L.T., Kean M.J., Jackson G.D., Harvey A.S. Clinical and imaging features of cortical malformations in childhood. Neurology. 1999; 53: 715-22. https://doi.org/10.1212/wnl.53.4.715.

2. Mirzaa G.M., Paciorkowski A.R. Introduction: brain malformations. Am J Med Genet C Semin Med Genet. 2014; 166C: 117-23. https://doi.org/10.1002/ajmg.c.31404.

3. Berg A.T., Testa F.M., Levy S.R., Shinnar S. Neuroimaging in children with newly diagnosed epilepsy: a community-based study. Pediatrics. 2000; 106: 527-532. https://doi.org/10.1542/peds.106.3.527.

4. Mukhin K.Yu., Glukhova L.Yu., Bobylova M.Yu., Chadaev V.A., Petrukhin A.S. Epileptic syndromes. Diagnosis and therapy. A guide for doctors. Moscow. 2018; (in Russ).

5. Wyllie E. Surgery for catastrophic localization-related epilepsy in infants. Epilepsia. 1996; 37 (1): S22-5.

6. Kloss S., Pieper T., Pannek H., et al. Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome. Neuropediatrics. 2002; 33: 21. https://doi.org/10.1136/jnnp.2006.105361.

7. Téllez-Zenteno J.F., Hernández Ronquillo L., Moien-Afshari F., Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010; 89: 310-318. https://doi.org/10.1016/j.eplepsyres.2010.02.007.

8. Bien C.G., Szinay M., Wagner J., Clusmann H., Becker A.J., Urbach H. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol. 2009; 66: 1491-1499. https://doi.org/10.1001/archneurol.2009.283.

9. Borggraefe I., Tacke M., Gerstl L., Leiz S., Coras R., Blumcke I., Giese A., Ertl-Wagner B., Thiel Christian T., Noachtar S., Peraud A. Epilepsy surgery in the first months of life: a large type IIb focal cortical dysplasia causing neonatal drug-resistant epilepsy. Epileptic Disord. 2019; 21 (1): 122-7.

10. Duchowny M., Jayakar P., Resnick T., et al. Epilepsy surgery in the first three years of life. Epilepsia. 1998; 39: 737-43.

11. Honda R., Kaido T., Sugai K. et al. Long-term developmental outcome after early hemispherotomy for hemimegalencephaly in infants with epileptic encephalopathy. Epilepsy Behav. 2013; 29: 30-5. https://doi.org/10.1016/j.yebeh.2013.06.006.

12. Loddenkemper T., Holland K.D., Stanford L.D. et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007; 119: 930-5. https://doi.org/10.1542/peds.2006-2530.

13. Kumar R.M., Koh S., Knupp K., Handler M.H., O’Neill B.R. Surgery for infants with catastrophic epilepsy: an analysis of complications and efficacy. Childs Nerv Syst. 2015; 31: 1479- 91. https://doi.org/10.1007/s00381-015-2759-6.

14. Gowda S., Salazar F., Bingaman W.E., Kotagal P., Lachhwani D.L., Gupta A., et al. Surgery for catastrophic epilepsy in infants 6 months of age and younger. J Neurosurg Pediatr. 2010; 5: 603-7. https://doi.org/10.3171/2010.1.PEDS08301.

15. Peterson C., Garling R.J., Asano E., Kupsky W.J., Set K., Agarwal R., Sood S. Successful Surgical Treatment of Refractory Status Epilepticus in a 12-Day-Old Infant. Pediatric Neurology. 2018. https://doi.org/10.1016/j.pediatrneurol.2018.11.011.

16. Barkovich A.J., Guerrini R., Kuzniecky R.I., Jackson G.D., Dobyns W.B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012; 135: 1348-1369. https://doi.org/10.1093/brain/aws019.

17. Guerrini R., Dobyns W.B. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014; 13: 710-726. https://doi.org/10.1016/S1474-4422(14)70040-7.

18. Alikhanov A.A., Generalov V.O., Demushkina A.A., Perepelova E.M., Shimanovskii N.L., Chadaev V.A. Visualization of epileptogenic brain lesions in children. A guide for doctors. Moscow. 2009; (in Russ).

19. Abdel Razek A.A., Kandell A.Y., Elsorogy L.G., Elmongy A., Basett A.A. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol. 2009; 30: 4-11. https://doi.org/10.3174/ajnr.A1223.

20. Mukhin K.Y. Focal cortical dysplasias: clinical and electroneuroimaging characteristics. Russian Journal of Child Neurology. 2016;11 (2): 8-24. (In Russ.) https://doi.org/10.17650/2073-8803-2016-11-2-8-24.

21. Stutterd C.A., Leventer R.J. Polymicrogyria: a common and of cortical development. Am J Med Genet C Semin Med Genet. 2014; 166C: 227-39. https://doi.org/10.1002/ajmg.c.31399.

22. Andrade C.S., Leite Cda C. Malformations of cortical development: current concepts and advanced neuroimaging review. Arq Neuropsiquiatr. 2011; 69: 130-8.

23. Alikhanov A. A. Neuroradiological model of various variants of impairment of neural migration. Zhurn. nevrologii i psikhiatrii im. S. S. Korsakova (In Russ.). 2004; 104 (7): 11-16.

24. Protsenko E.V. Morphogenesis of the ventricular germinal zone and neocortex in live and stillborn with hydrocephalus. MD Diss. Saratov. 2016; 267 s. (In Russ.)

25. Knickmeyer R.C., Gouttard S., Kang C., Evans D., Wilber K., Smith J.K., Hamer, R.M., Lin, W., Gerig, G., Gilmore, J.H. A structural MRI study of human brain development from birth to 2 years. The Journal of Neuroscience. 2008; 28, 12176-12182. https://doi.org/10.1523/JNEUROSCI.3479-08.2008.

26. Lyall A.E., Shi F., Geng X., Woolson S., Li G., Wang L., Hamer R.M., Shen D., Gilmore J.H. Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral cortex. 2014; 25: 2204-2212. https://doi.org/10.1093/cercor/bhu027.

27. Kamiya K., Sato N., Saito Y., Nakata Y., Ito K., Shigemoto Y., Ota M., Sasaki M., Ohtomo K. Accelerated myelination along fiber tracts in patients with hemimegalencephaly. Journal of Neuroradiology. 2014; 41 (3): 202-210. https://doi.org/10.1016/j.neurad.2013.08.005.

28. Welker K.M., Patton A. Assessment of normal myelination with magnetic resonance imaging. Semin Neurol. 2012; 32: 15-28. https://doi.org/10.1055/s-0032-1306382.

29. Nakagawa H., Iwasaki S., Kichikawa K., et al. Normal myelination of anatomic nerve fiber bundles: MR analysis. AJNR Am J Neuroradiol. 1998; 19: 1129-36.

30. Kinney H.C., Brody B.A., Kloman A.S., et al. Sequence of central nervous system myelination in human infancy II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol. 1988; 47: 217-34.

31. Mostapha M., Styner M. Role of deep learning in infant brain MRI analysis. Magnetic Resonance Imaging. https://doi.org/10.1016/j.mri.2019.06.009.

32. Li G., Wang L., Yap P.-T., Wang F., Wu Z., Meng Y., Dong P., Kim J., Shi F., Rekik I., Lin W., Shen D. Computational neuroanatomy of baby brains: A review. NeuroImage. 2018; 185: 906-925. https://doi.org/10.1016/j.neuroimage.2018.03.042.

33. Paus T., Collins D.L., Evans A.C., Leonard G., Pike B., Zijdenbos A. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin. 2001; 54, 255-266. https://doi.org/10.1016/s0361-9230(00)00434-2.

34. Barkovich A.J., Kuzniecky R.I., Jackson G.D., Guerrini R., Dobyns W.B. Classification system for malformations of cortical development: update 2001. Neurology. 2001; 57: 2168-2178. https://doi.org/10.1212/wnl.57.12.2168.

35. Barkovich A.J. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 2000; 21: 1099-109.

36. Eltze C.M., Chong W.K., Bhate S., Harding B., Neville B.G., Cross J.H. Taylor-type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia. 2005; 46:1988-1992. https://doi.org/10.1111/j.1528-1167.2005.00339.x.

37. Sankar R., Curran J.G., Kevill J.W., Rintahaka P.J., Shewmon D.A., Vinters H.V. Microscopic cortical dysplasia in infantile spasms: evolution of white matter abnormalities. AJNR Am J Neuroradiol. 1995; 16: 1265-1272.

38. Winston G.P., Micallef C., Kendell B.E., Bartlett P.A., Williams E.J., Burdett J.L., et al. The value of repeat neuroimaging for epilepsy at a tertiary referral centre: 16 years of experience. Epilepsy Res. 2013; 105: 349-355.

39. Yoshida F., Morioka T., Hashiguchi K., Miyagi Y., Nagata S., Yamaguchi Y., et al. Appearance of focal cortical dysplasia on serial MRI after maturation of myelination. Childs Nerv Syst. 2008; 24: 269-273. https://doi.org/10.1007/s00381-007-0447-x.

40. Jeon T.Y., Kim J.H., Lee J., Yoo S.Y., Hwang S.M., Lee M. Value of repeat brain MRI in children with focal epilepsy and negative findings on initial MRI. Korean J Radiol. 2017; 18: 729-738.

41. Takanashi J., Barkovich A.J. The changing MR imaging appearance of polymicrogyria: a consequence of myelination. AJNR Am J Neuroradiol. 2003; 24: 788-793.

42. Guibaud L. Contribution of fetal cerebral MRI for diagnosis of structural anomalies. Prenat Diagn. 2009; 29: 420-33. https://doi.org/10.1002/pd.2171.

43. Brugger P.C., Stuhr F., Lindner C. et al. Methods of fetal MR: beyond T2- weighted imaging. Eur J Radiol. 2006; 57: 172-81. https://doi.org/10.1016/j.ejrad.2005.11.017.

44. Glenn O.A., Barkovich J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. Am J Neuroradiol. 2006; 27: 1807-14.

45. Goergen S.K., Alibrahim E., Govender N., Stanislavsky A., Abel C., Prystupa S., Collett J., Shelmerdine S., Arthurs О. J. Diagnostic assessment of foetal brain malformations with intra-uterine MRI versus perinatal post-mortem MRI. Neuroradiology. 2019; 61: 921-934. https://doi.org/10.1007/s00234-019-02218-9.

46. Yagishita A., Arai N., Tamagawa K., et al. Hemimegalencephaly: signal changes suggesting abnormal myelination on MRI. Neuroradiology. 1998; 40: 734-8.

47. Jeon Y., Kim J.H., Lee J., Yoo So-Y., Hwang S.M., Lee M. Value of Repeat Brain MRI in Children with Focal Epilepsy and Negative Findings on Initial MRI. Korean J Radiol. 2017; 18 (4): 729-738. https://doi.org/10.3348/kjr.2017.18.4.729.

48. Fitsiori A., Lazeyras F., Seeck M., Nguyen D., Ailianou A., Delavelle J., Vargas M.I. Malformations of cortical development of the human brain: A pictorial essay. J. Neuroradiol. 2012; 39: 205-217. https://doi.org/10.1016/j.neurad.2011.06.002.

49. Pang T., Atefy R., Sheen V. Malformations of cortical development. Neurologist. 2008; 14: 181-191. https://doi.org/10.1097/NRL.0b013e31816606b9.


For citation:


Polyanskaya M.V., Demushkina A.A., Kostylev F.A., Kurbanova F.A., Vasilyev I.G., Chadaev V.A., Zavadenko N.N., Alikhanov A.A. MRI diagnosis of cortical dysplasia in the immature brain. Epilepsy and paroxysmal conditions. 2020;12(1):36-50. (In Russ.) https://doi.org/10.17749/2077-8333.2020.12.1.36-50

Views: 255


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)