EEG in genetic generalized epilepsies
https://doi.org/10.17749/2077-8333.2020.12.1S.S23-S40
Abstract
Genetic, or idiopathic, generalized epilepsies (GGEs or IGEs) includes childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and epilepsy with generalized tonic-clonic seizures alone (GTCS-a).
Aim. to characterize the capabilities of electroencephalography (EEG) for the diagnosis of various forms of genetic generalized epilepsy
Materials and methods. Literature data in Pubmed, Google Scholar was analyzed. In addition, own observations and clinical cases were systematized.
Results. The article presents the data of morphology and topography of spike-wave discharges, as well as other patterns of EEG in the GGE – poly-spike activity, photoparoxysmal response, occipital intermittent rhythmic delta activity (OIRDA), fixation-off sensitivity and generalized paroxysmal fast activity (GPFA), as well as epileptiform K-complexes, the allocation of which in an independent pattern is questioned by a number of neurophysiologists. The differences between interictal and ictal activity in the GGE are discussed in detail; electroencephalogram (EEG) informativity modifiers are considered. The morphology of atypical features in the GGE is considered. The role of EEG in the differential diagnosis of CAE, JAE, JME, GTCS alone with the description of typical, atypical features, study scenarios and diagnostic criteria for each form are considered.
Conclusions. Typical EEG features of GGE significantly simplify the differential diagnosis of electroclinical syndromes. There are “non-classical” features of EEG in the GGE, which do not contradict the diagnosis. To reveal the peculiarities of epileptiform discharges distribution, video EEG monitoring with night-time sleep and the use of several modality stimuli is preferable. Incorrect interpretation of EEG is dangerous for the patient.
Keywords
About the Authors
V. Yu. NogovitsynRussian Federation
Vasiliy Yu. Nogovitsyn – MD, PhD, pediatric neurologist, epileptologist
35 Shchepkina Str., Moscow 129090
A. A. Sharkov
Russian Federation
Artem A. Sharkov – MD, Research Associate, neurologist
WoS ResearcherID: AAO-7543-2020; SPIN-code: 8727-5997
2 Taldomskaya Str., Moscow 125412
References
1. Scheffer I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 (4): 512–521.
2. Avakyan G.N., Blinov D.V., Lebedeva A.V., Burd S.G., Avakyan G.G. ILAE classification of the epilepsies: the 2017 revision and update. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2017;9(1):6-25. (In Russ.) DOI: https://doi.org/10.17749/2077-8333.2017.9.1.006-025.
3. Jallon P., Latour P. Epidemiology of idiopathic generalized epilepsies. Epilepsia. 2005; 46 (9): 10–14.
4. ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the international league against epilepsy. Epilepsia. 1989; 30 (4): 389–99.
5. Gibbs F. A., Davis H., Lennox W. G. The electro-encephalogram in epilepsy and in conditions of impaired consciousness. Arch Neurol Psychiatry. 1935; 34: 1133–48.
6. Sadleir L. G., Scheffer I. E., Smith S., Carstensen B., Farrell K., Connolly M. B. EEG features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state. Epilepsia. 2009; 50 (6): 1572–8.
7. Koutroumanidis M. et al. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 1). Epileptic Disorders. 2017; 19 (3): 233–298.
8. Karlov V. A. Epilepsy. M.: Medicine. 1990; 336 s.
9. Seneviratne U., Cook M., D’Souza W. Consistent topography and amplitude symmetry are more typical than morphology of epileptiform discharges in genetic generalized epilepsy. Clinical Neurophysiology. 2016; 127 (2): 1138–1146.
10. Waltz S., Christen H. J., Doose H. The different patterns of the photoparoxysmal response – a genetic study. Electroencephalogr Clin Neurophysiol. 1992 Aug; 83 (2): 138–45.
11. Kasteleijn-Nolst Trenité D., Rubboli G., Hirsch E., Martins da Silva A., Seri S., Wilkins A., Parra J., Covanis A., Elia M., Capovilla G., Stephani U., Harding G. Methodology of photic stimulation revisited: updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia. 2012 Jan; 53 (1): 16–24.
12. Kasteleijn-Nolst Trenité D., Guerrini R., Binnie C. D., Genton P. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia. 2001 May; 42 (5): 692–701.
13. Sevgi E. B., Saygi S., Ciger A. Eye closure sensitivity and epileptic syndromes: a retrospective study of 26 adult cases. Seizure. 2007; 16 (1): 17–21.
14. Seneviratne U., Cook M. J., D’Souza W. J. Electroencephalography in the diagnosis of genetic generalized epilepsy syndromes. Frontiers in neurology. 2017; 8: 499.
15. Niedermeyer E. Epileptiform K complexes. American journal of electroneurodiagnostic technology. 2008; 48 (1): 48–51.
16. Seneviratne U. et al. Atypical EEG abnormalities in genetic generalized epilepsies. Clinical Neurophysiology. 2016; 127 (1): 214–220.
17. Prasad M. et al. 3D movies and risk of seizures in patients with photosensitive epilepsy. Seizure. 2012; 21 (1): 49–50.
18. Wilkins A. Pattern-sensitive Epilepsy. Atlas of Epilepsies. 2010; 1093–1098.
19. El Shakankiry H. M., Kader A. A. A. Pattern sensitivity: a missed part of the diagnosis. Neuropsychiatric disease and treatment. 2012; 8 (313).
20. Furusho J. et al. A comparison survey of seizures and other symptoms of Pokemon phenomenon. Pediatric neurology. 2002; 27 (5): 350–355.
21. Seneviratne U., Boston R. C., Cook M., D’Souza W. Temporal patterns of epileptiform discharges in genetic generalized epilepsies. Epilepsy Behav. 2016; 64(A): 18–25.
22. Koutroumanidis M. et al. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 2). Epileptic Disorders. 2017; 19 (4): 385–437.
23. Serafini A., Rubboli G., Gigli G. L., Koutroumanidis M., Gelisse P. Neurophysiology of juvenile myoclonic epilepsy. Epilepsy Behav. 2013; 28 (1): 30–39.
24. Laoprasert P. Atlas of Pediatric EEG, McGraw-Hill, 2011.
25. Seneviratne U. et al. Can EEG differentiate among syndromes in genetic generalized epilepsy? Journal of Clinical Neurophysiology. 2017; 34 (3): 213–221.
26. Scheepers B., Clough P., Pickles C. The misdiagnosis of epilepsy: findings of a population study. Seizure-European Journal of Epilepsy. 1998; 7 (5): 403–406.
27. Ноговицын В. Ю. и соавт. Эпилептиформная активность у детей без эпилепсии: клинико-электроэнцефалографические корреляции. Журнал неврологии и психиатрии им. С. С. Корсакова. 2006; 106 (6): 42–6.
28. Berkovic S. F. Aggravation of generalized epilepsies. Epilepsia. 1998; 39: 11–14.
29. Crespel A. et al. Wicket spikes misinterpreted as focal abnormalities in idiopathic generalized epilepsy with prescription of carbamazepine leading to paradoxical aggravation. Neurophysiologie Clinique/Clinical Neurophysiology. 2009; 39 (3): 139–142.
30. Blume W. T., Pillay N. Electrographic and clinical correlates of secondary bilateral synchrony. Epilepsia. 1985; 26 (6): 636–41.
Review
For citations:
Nogovitsyn V.Yu., Sharkov A.A. EEG in genetic generalized epilepsies. Epilepsy and paroxysmal conditions. 2020;12(1S):S23-S40. (In Russ.) https://doi.org/10.17749/2077-8333.2020.12.1S.S23-S40

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.