Preview

Epilepsy and paroxysmal conditions

Advanced search

The role of susceptibility-weighted imaging (SWI) in neuroimaging in children with focal epilepsy

https://doi.org/10.17749/2077-8333/epi.par.con.2020.025

Full Text:

Abstract

Aim. To approve of diagnostic effectiveness of SWAN (SWI) images in revealing of calcium containing epileptogenic substrates in children with resistant focal epilepsy.

Materials and methods. The results of MRI in children with refractory focal epilepsy obtained in the Radiology Department of the Russian State Children Hospital in the period from 2018 to 2020 were observed retrospectively. High-resolution epileptological MR protocol used for investigation of 67 children. SWAN was applied in all cases for identification of calcium containing epileptogenic substrates, including cavernomas, DVA syndrome, cortical gangliogliomas, Sturge-Weber syndrome and tuberous sclerosis complex. All images were received by using MRI 3T 750 W Discovery GE.

Results. In 17 cases (25%) SWAN provided important diagnostic information about the nature of the of epileptogenic lesion, its prevalence and borders. Additional earlier invisible structural changes were revealed in 2 cases of SWS and 1 cases of FCD; and in 13 cases SWAN gave us possibility to avoid CT for approving calcium in epileptogenic focus.

Conclusion. We believe that adding SWAN in to the epileptological MR protocol is the necessary step for optimizing calcium and blood degradation products identification in the structure of potential epileptogenic focuses. Moreover, it would be very effective instrument for differential diagnosis of cerebral structural changes, specifying its etiology and, hence, would have influence on the therapeutic tactic and surgical strategy in children with focal epilepsy.

About the Authors

M. V. Polyanskaya
Pirogov Russian National Research Medical University
Russian Federation

Maiya V. Polyanskaya – MD, Senior Laboratory Assistant, Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics; Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia



A. A. Demushkina
Pirogov Russian National Research Medical University
Russian Federation

Alisa A. Demushkina – MD, PhD (Medical Sciences), Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia



F. A. Kostylev
Pirogov Russian National Research Medical University
Russian Federation
Fedor A. Kostylev – MD, Radiologist, Department of Diagnostic Radiology, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia


I. G. Vasilyev
Pirogov Russian National Research Medical University
Russian Federation
Igor G. Vasilyev – MD, Neurosurgeon, Department of Neurosurgery, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia


V. A. Chadaev
Pirogov Russian National Research Medical University
Russian Federation
Viktor A. Chadaev – MD, PhD (Medical Sciences), Neurologist, Department of Neurosurgery, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia


N. N. Zavadenko
Pirogov Russian National Research Medical University
Russian Federation

Nikolai N. Zavadenko – MD, PhD, Professor & Head, Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Scopus Author ID: 7004071775, RSCI SPIN-code: 86405, 1 Ostrovityanova Str., Moscow 117997, Russia



A. A. Alikhanov
Pirogov Russian National Research Medical University
Russian Federation

Alikhan A. Alikhanov – MD, PhD (Medical Sciences), Professor & Head, Department of Diagnostic Radiology, Children’s Clinical Hospital, 1 Ostrovityanova Str., Moscow 117997, Russia



References

1. Bernasconi A., Cendes F., Theodore W. H., Gill R. S., Koepp M. J., Hogan R. E., Jackson G. D., Federico P., Labate A., Vaudano A. E., Blümcke I., Ryvlin P., Bernasconi N. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019; 60: 1054–68. https://doi.org/10.1111/epi.15612.

2. Avakyan G. N., Blinov D. V., Alikhanov A. A., Perepelova E. M., Perepelov V. A., Burd S. G., Lebedeva A. V., Avakyan G. G. Recommendations of the Russian League Against Epilepsy (RLAE) on the use of magnetic resonance imaging in the diagnosis of epilepsy. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2019; 11 (3): 208–232. (In Russ.) https://doi.org/10.17749/2077-8333.2019.11.3.208-232.

3. Rosenow F., Hattingen E., Wagner M., Freiman T. M., Konczalla J., Knake S., Strzelczyk A. Susceptibility–weighted imaging (SWI) or T2* contrasts should remain standard in the neuroimaging of epilepsy. Epilepsia. 2019; https://doi.org/10.1111/epi.16323.

4. Deistung A., Mentzel H.-J., Rauscher A., Witoszynskyj S., Kaiser W. A., Reichenbach J. R. Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Zeitschrift Für Medizinische Physik. 2006; 16 (4): 261–267. https://doi.org/10.1078/0939-3889-00324.

5. Saini, J., Kesavadas, C., Thomas, B., Kapilamoorthy, T. R., Gupta, A. K., Radhakrishnan, A., & Radhakrishnan, K. Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia. 2009; 50 (6): 1462–1473. https://doi.org/10.1111/j.1528-1167.2008.01882.x.

6. Haddar D., Haacke E. M., Sehgal V., Delproposto Z., Salamon G., Seror O., Sellier N. L’imagerie de susceptibilité magnétique : théorie et applications. Journal de Radiologie. 2004; 85 (11): 1901–1908. https://doi.org/10.1016/s0221-0363(04)97759-1.

7. Babikian T., Freier M. C., Tong K. A. et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr. Neurol. 2005; 33: 184–194. https://doi.org/10.1016/j.pediatrneurol.2005.03.015.

8. Tong K. A., Ashwal S., Holshouser B. A., Nickerson J. P., Wall C. J., Shutter L. A., Osterdock R. J., Haacke E. M., Kido D. Diffuse axonal injury in children: Clinical correlation with hemorrhagic lesions. Ann Neurol. 2004; 56: 36–50. https://doi.org/10.1002/ana.20123.

9. Tong K. A., Ashwal S., Holshouser B. A., Shutter L. A., Herigault G., Haacke E. M., Kido D. K. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: Improved detection and initial results. Radiology. 2003; 227: 332–9. https://doi.org/10.1148/radiol.2272020176.

10. Currie S., Saleem N., Straiton J. A., Macmullen-Price J., Warren D. J., Craven I. J. Imaging assessment of traumatic brain injury. Postgraduate Medical Journal. 2015; 92 (1083): 41–50. https://doi.org/10.1136/postgradmedj-2014-133211.

11. Pittau F., Baud M. O., Jorge J., Xin L., Grouiller F., Iannotti G. R., Seeck M., Lazeyras F., Vulliémoz S., Vargas M. I. MP2RAGE and susceptibility–weighted imaging in lesional epilepsy at 7T. J Neuroimaging. 2018; 28: 365–9. https://doi.org/10.1111/jon.12523.

12. Rauscher A., Sedlacik J., Deistung A., Mentzel H.-J., Reichenbach J. R. Susceptibility Weighted Imaging: Data Acquisition, Image Reconstruction and Clinical Applications. Zeitschrift Für Medizinische Physik. 2006; 16 (4): 240–250. https://doi.org/10.1078/0939-3889-00322.

13. Sehgal V., Delproposto Z., Haddar D., Haacke E. M., Sloan A. E., Zamorano L. J., Barger G., Hu J., Xu Y., Prabhakaran K. P., Elangovan I. R., Neelavalli J., Reichenbach J. R. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. Journal of Magnetic Resonance Imaging. 2006; 24 (1): 41–51. https://doi.org/10.1002/jmri.20598.

14. Allibert R., Billon Grand C., Vuillier F., Cattin F., Muzard E., Biondi A., Moulin T., Medeiros E. Advantages of susceptibility-weighted magnetic resonance sequences in the visualization of intravascular thrombi in acute ischemic stroke. Int J Stroke. 2014; 9: 980–984. https://doi.org/10.1111/ijs.12373.

15. San Milla´n Ruı´z D., Delavelle J., Yilmaz H., Gailloud Ph., Piovan E., Bertramello A., Pizzini F. Rüfenacht D. A. Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology. 2007; 49 (12): 987–995. https://doi.org/10.1007/s00234-007-0279-0.

16. Maciunas J. A., Syed T. U., Cohen M. L., Werz M. A., Maciunas R. J., Koubeissi M. Z. Triple pathology in epilepsy: Coexistence of cavernous angiomas and cortical dysplasias with other lesions. Epilepsy Research. 2010; 91 (1): 106–110. https://doi.org/10.1016/j.eplepsyres.2010.07.002.

17. Dussaule C., Masnou P., Nasser G., Archambaud F., Cauquil-Michon C., Gagnepain J.-P., Bouilleret V., Denier C. Can developmental venous anomalies cause seizures? Journal of Neurology. 2017; 264 (12): 2495–2505. https://doi.org/10.1007/s00415-017-8456-5.

18. Bouchacourt E., Carpena J., Bories J., Koussa A., Chiras J. Ischemic accident caused by thrombosis of a venous angioma. Apropos of a case. J Radiol. 1986; 67 (8–9): 631–635. PMID: 3795187.

19. Buhl R., Hempelmann R. G., Stark A. M., Mehdorn H. M. Therapeutical considerations in patients with intracranial venous angiomas. Eur J Neurol Off J Eur Fed Neurol Soc. 2002; 9 (2): 165–169. https://doi.org/10.1046/j.1468-1331.2002.00372.x.

20. Willie J. T., Malcolm J. G., Stern M. A., Lowder L. O., Neill S. G., Cabaniss B. T., Drane D. L., Gross R. E. Safety and effectiveness of stereotactic laser ablation for epileptogenic cerebral cavernous malformations. Epilepsia. 2019; 60: 220–32. https://doi.org/10.1111/epi.14634.

21. Osborn A. G. Diagnostic Imaging Brain. Volume 1. Amirsys Inc.; Salt Lake City, UT, USA: 2004; [Google Scholar].

22. Schuss P., Marx J., Borger V., Brandecker S., Güresir Á., Hadjiathanasiou A., Hamed M., Schneider M., Surges R., Vatter H., Güresir E. Cavernoma-related epilepsy in cavernous malformations located within the temporal lobe: surgical management and seizure outcome. Neurosurg Focus. 2020 Apr 1; 48 (4): E6. https://doi.org/10.3171/2020.1.FOCUS19920.

23. Rosenow F., Alonso–Vanegas M.A., Baumgartner C., Blümcke I., Carreño M., Gizewski E. R., Hamer H. M., Knake S., Kahane P., Lüders H. O., Mathern G. W., Menzler K., Miller J., Otsuki T., Ozkara C., Pitkänen A., Roper S. N., Sakamoto A. C., Sure U., Walker M. C., Steinhoff B. J. Cavernoma–related epilepsy: review and recommendations for management–report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2013; 54: 2025–35. https://doi.org/10.1111/epi.12402.

24. Fitsiori A., Lazeyras F., Seeck M., Nguyen D., Ailianou A., Delavelle J., Vargas M.-I. Malformations of cortical development of the human brain: A pictorial essay. Journal of Neuroradiology. 2012; 39 (4): 205–217. https://doi.org/10.1016/j.neurad.2011.06.002.

25. Kesavadas C., Thomas B., Misra S., Saini J. Attenuation of Cerebral Veins in Susceptibility-Weighted MR Imaging Performed with the Patient under General Anesthesia: Fig 1. American Journal of Neuroradiology. 2008; 29 (8): e71–e71. https://doi.org/10.3174/ajnr.a1083.

26. Tuberous sclerosis. Diagnosis and treatment. Edited by M. Yu. Dorofeeva, team of authors. Moscow. 2017 (in Russ).

27. Holthausen H., Pieper T., Eitel H., Kudernatsch M. Surgical treatment of epilepsy in patients with tuberous sclerosis. Russkii zhurnal detskoi nevrologii (in Russ.). 2015; 10 (1): 40–46. https://doi.org/10.17650/2073-8803-2015-1-40-46.

28. Cendes F., Theodore W. H., Brinkmann B. H., Sulc V., Cascino G. D. Neuroimaging of epilepsy. Neuroimaging. Part II. 2016; 985–1014. https://doi.org/10.1016/b978-0-444-53486-6.00051-x.

29. Planche V., Chassin O., Leduc L., Regnier W., Kelly A., Colamarino R. Sturge-Weber syndrome with late onset hemiplegic migraine-like attacks and progressive unilateral cerebral atrophy. Cephalalgia. 2013; 34 (1): 73–77. https://doi.org/10.1177/0333102413505237.

30. Liu X., Otsuki T., Takahashi A., Kaido T. Vertical parasagittal hemispherotomy for Sturge–Weber syndrome in early infancy: case report and literature review. SpringerPlus. 2016; 5 (1). https://doi.org/10.1186/s40064-016-3096-2.

31. Blümcke I., Spreafico R. An international consensus classification for focal cortical dysplasias. The Lancet Neurology. 2011; 10 (1): 26–27. https://doi.org/10.1016/s1474-4422(10)70225-8.

32. Luzzi S., Elia A., Del Maestro M., Elbabaa S. K., Carnevale S., Guerrini F., Caulo M., Morbini P., Galzio R. Dysembryoplastic Neuroepithelial Tumors: What You Need to Know. World Neurosurgery. 2019; https://doi.org/10.1016/j.wneu.2019.04.056.

33. Hirano T., Enatsu R., Iihoshi S., Mikami T., Honma T., Ohnishi H., Mikuni N. Effects of hemosiderosis on epilepsy following subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 2019; 59: 27–32. https://doi.org/10.2176/nmc.oa.2018-0125.

34. Skjei K. L., Dlugos D. J. The evaluation of treatment-resistant epilepsy. Semin. Pediatr. Neurol. 2011; 18: 150–170. https://doi.org/10.1016/j.spen.2011.06.002.

35. Kar A. M., Garg R. K., Verma R. Refractory epilepsy: Diagnosis and management. J. Indian Med. Assoc. 2002; 100: 290–294.

36. Medina M. T., Durón R. M., Martínez L., Osorio J. R., Estrada A. L., Zúniga C., Cartagena D., Collins J. S., Holden K. R. Prevalence, incidence, and etiology of epilepsies in rural Honduras. The Salamá Epilepsia. 2005; 46: 124–131. https://doi.org/10.1111/j.0013-9580.2005.11704.x.

37. Brutto O. H. D., Santibanez R., Idrovo L., Rodriguez S., Diaz-Calderon E., Navas C., Gilman R. H., Cuesta F., Mosquera A., Gonzalez A. E., Tsang V. C., García H. H. Epilepsy and Neurocysticercosis in Atahualpa: A Door-to-Door Survey in Rural Coastal Ecuador. Epilepsia. 2005; 46 (4): 583–587. https://doi.org/10.1111/j.0013-9580.2005.36504.x.

38. Wallin M. T., Kurtzke J. F. Neurocysticercosis in the United States: Review of an important emerging infection. Neurology. 2004; 63 (9): 1559–1564. https://doi.org/10.1212/01.wnl.0000142979.98182.ff.


For citation:


Polyanskaya M.V., Demushkina A.A., Kostylev F.A., Vasilyev I.G., Chadaev V.A., Zavadenko N.N., Alikhanov A.A. The role of susceptibility-weighted imaging (SWI) in neuroimaging in children with focal epilepsy. Epilepsy and paroxysmal conditions. 2020;12(2):105-116. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2020.025

Views: 194


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)