Epilepsy and paroxysmal conditions

Advanced search

Motor neurorehabilitation in patients with epileptic seizures: limitations of methods with proven efficacy in stroke

Full Text:


Patients with epilepsy may require a neurorehabilitation aid particularly due to developing motor alterations related to stroke, sequelae of traumatic brain injury, multiple sclerosis and  other brain damage. Modern neurorehabilitation approaches  directly or indirectly affect neuroplastic processes altering cerebral cortex excitability, stimulate the afferentation systems,  and result in fatigue and may act as factors provoking seizures or  aggravated epilepsy. In addition, developing seizures may  temporarily coincide but unrelated to the neurorehabilitation  activities: e.g., while omitting antiepileptic drug administration,  sleep deprivation or long-term stress occurring to patient etc. Here we present a review on recent studies aimed at  investigating epilepsy triggers by aligning them with the factors  of interventions used in motor rehabilitation. We also emphasize  the safety data for routine use of the main neurorehabilitation methods as well as propose actions to reduce the risk of developing epileptic seizure.

About the Authors

R. Kh. Lyukmanov
Research Center of Neurology
Russian Federation

Roman Kh. Lyukmanov, MD, PhD, Researcher, Department of Neurorehabilitation and Physiotherapy

Scopus Author ID: 57188594033

WoS ResearcherID: X-5954-2019

RSCI SPIN-code: 2148-6716

80 Volokolamskoye shosse, Moscow 125367

A. A. Rimkevichus
Research Center of Neurology
Russian Federation

Anastasiya А. Rimkevichus, Neurologist, Department of Neurorehabilitation and Physiotherapy

RSCI SPIN-code: 9502-3261

80 Volokolamskoye shosse, Moscow 125367

E. V. Shalimanova
Research Center of Neurology
Russian Federation

Elena V. Shalimanova, Neurologist, 2nd Neurological Department

80 Volokolamskoye shosse, Moscow 125367

K. V. Voronkova
Pirogov Russian National Research Medical University; Central Clinical Hospital, Russian Academy of Sciences
Russian Federation

Kira V. Voronkova, Dr. Med. Sc., Professor; Association of Epileptologists and Patients; Center for Study of Problems of a  Falling Patient in Medicine

RSCI SPIN-code: 1636-7627

1 Ostrovityanov Str., Moscow 117997

1а Litovskiy Blvd., Moscow 117593

N. A. Suponeva
Research Center of Neurology
Russian Federation

Natalya A. Suponeva, Dr. Med. Sc., Corresponding Member of Russian Academy of Sciences, Senior Researcher, Head of
Department of Neurorehabilitation and Physiotherapy

RSCI SPIN-code: 3223-6006

80 Volokolamskoye shosse, Moscow 125367

М. А. Piradov
Research Center of Neurology
Russian Federation

Mikhail A. Piradov, Dr. Med. Sc., Academician of Russian Academy of Sciences, Director

Scopus Author ID: 7003731802

WoS ResearcherID: B-4407-2012

RSCI SPIN-code: 2860-1689

80 Volokolamskoye shosse, Moscow 125367


1. Карлов В.А. Эпилепсия у детей и взрослых женщин и мужчин. Руководство для врачей. 2-е изд. М.: БИНОМ; 2019.

2. Fiest K.M., Sauro K.M., Wiebe S., et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017; 88 (3): 296–303.

3. Zelano J. Poststroke epilepsy: update and future directions. Ther Adv Neurol Disord. 2016; 9 (5): 424–35.

4. Xu M.Y. Poststroke seizure: optimising its management. Stroke Vas Neurol. 2018; 4: 48–56.

5. Quirins M., Dussaule C., Denier C., Masnou P. Epilepsy after stroke: definitions, problems and a practical approach for clinicians. Rev Neurol. 2019; 175 (3): 126–32.

6. World Health Organization. Epilepsy: a public health imperative. Geneva. 2019. URL: (дата обращения 21.03.2021).

7. Мокиенко О.А., Супонева Н.А., Азиатская Г.А. и др. Инсульт у взрослых: центральный парез верхней конечности. Клинические рекомендации. М.: МЕДпресс-Информ; 2019.

8. Frucht M.M., Quigg M., Schwaner C., Fountain N.B. Distribution of seizure precipitants among epilepsy syndromes. Epilepsia. 2000; 41 (12): 1534–9.

9. Cobabe M.M., Sessler D.I., Nowacki A.S., et al. Impact of sleep duration on seizure frequency in adults with epilepsy: a sleep diary study. Epilepsy Behav. 2015; 43: 143–8.

10. McKee H.R., Privitera M.D. Stress as a seizure precipitant: identification, associated factors, and treatment options. Seizure. 2017; 44: 21–6.

11. Wassenaar M., Kasteleijn-Nolst Trenité D.G., de Haan G., et al. Seizure precipitants in a community-based epilepsy cohort. J Neurol. 2014; 261 (4): 717–24.

12. Privitera M., Walters M., Lee I., et al. Characteristics of people with self-reported stress-precipitated seizures. Epilepsy Behav. 2014; 41: 74–7.

13. Thapar A., Kerr M., Harold G. Stress, anxiety, depression, and epilepsy: investigating the relationship between psychological factors and seizures. Epilepsy Behav. 2009; 14 (1): 134–40.

14. Cohen S., Kamarck T., Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983; 24: 385–96.

15. Vancampfort D., Ward P.B., Stubbs B. Physical activity and sedentary levels among people living with epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 2019; 99: 106390.

16. Arntz R., Maaijwee N., Rutten-Jacobs L., et al. Epilepsy after TIA or stroke in young patients impairs long-term functional outcome: the future study. Neurology. 2013; 81 (22): 1907–13.

17. Hinkle J.L., Becker K.J, Kim J.S., et al. Poststroke fatigue: emerging evidence and approaches to management: a scientific statement for healthcare professionals from the American Heart Association. Stroke. 2017; 48: e159–70.

18. Billinger S.A., Arena R., Bernhardt J., et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2014; 45: 2532–53.

19. Winstein C.J., Stein J., Arena R., et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016; 47: e98–169.

20. Arida R.M., de Almeida A.C., Cavalheiro E.A., Scorza F.A. Experimental and clinical findings from physical exercise as complementary therapy for epilepsy. Epilepsy Behav. 2013; 26 (3): 273–8.

21. Morgan J.A., Corrigan F., Baune B.T. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatr. 2015; 3 (1): 3.

22. Guiard B.P., Giovanni G.D. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol. 2015; 6: 46.

23. Ryu Y., Maekawa T., Yoshino D., et al. Mechanical regulation underlies effects of exercise on serotonin-induced signaling in the prefrontal cortex neurons. iScience. 2020; 23 (2): 100874.

24. McAuley J.W., Long L., Heise J., et al. A prospective evaluation of the effects of a 12-week outpatient exercise program on clinical and behavioral outcomes in patients with epilepsy. Epilepsy Behav. 2001; 2 (6): 592–600.

25. Pimentel J., Tojal R., Morgado J. Epilepsy and physical exercise. Seizure. 2015; 25: 87–94.

26. Arida R.M., Peixinho-Pena L.F., Scorza F.A., Cavalheiro E.A. Physical exercise: potential candidate as complementary therapy for epilepsy. Ann Indian Acad Neurol. 2012; 15 (2): 167.

27. Carrizosa-Moog J., Ladino L.D., Benjumea-Cuartas V., et al. Epilepsy, physical activity and sports: a narrative review. Can J Neurol Sci. 2018; 45 (6): 624–32.

28. Capovilla G., Kaufman K.R., Perucca E., et al. Epilepsy, seizures, physical exercise, and sports: a report from the ILAE Task Force on Sports and Epilepsy. Epilepsia. 2016; 57 (1): 6–12.

29. Van den Bogard F., Hamer H.M., Sassen R., Reinsberger C. Sport and physical activity in epilepsy. Dtsch ArzteblInt. 2020; 117 (1–2): 1–6.

30. Ishida S., Yamashita Y., Matsuishi T., et al. Photosensitive seizures provoked while viewing “pocket monsters”, a made-for-television animation program in Japan. Epilepsia. 1998; 39 (12): 1340–4.

31. Tychsen L., Thio L.L. Concern of photosensitive seizures evoked by 3D video displays or virtual reality headsets in children: current perspective. Eye Brain. 2020; 12: 45–8.

32. Martins da Silva A., Leal B. Photosensitivity and epilepsy: current concepts and perspectives – a narrative review. Seizure. 2017; 50: 209–18.

33. Fisher R.S., Harding G., Erba G., et al. Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia. 2005; 46 (9): 1426–41.

34. Takahashi Y., Ozawa T., Nakamura H., et al. Long-wavelength red light emission from TV and photosensitive siezures. Acta Neurol Scand. 2001; 103 (2): 114–9.

35. Хижникова А.Е., Клочков А.С., Котов-Смоленский А.М. и др. Виртуальная реальность как метод восстановления двигательной функции руки. Анналы клинической и экспериментальной неврологии. 2016; 10 (3): 5–12.

36. Yang L., Morland T.B., Schmits K., et al. A prospective study of loss of consciousness in epilepsy using virtual reality driving simulation and other video games. Epilepsy Behav. 2010; 18 (3): 238–46.

37. Kluger G. How safe is 3D TV for children with epilepsy? Neurol Rev. 2012; 20 (3): 5.

38. Prasad M., Arora M., Abu-Arafeh I., Harding G. 3D movies and risk of seizures in patients with photosensitive epilepsy. Seizure. 2012; 21 (1): 49–50.

39. Harding test. URL: (дата обращения 21.03.2021).

40. Nussbaum E.L., Houghton P., Anthony J., et al. Neuromuscular electrical stimulation for treatment of muscle impairment: critical review and recommendations for clinical practice. Physiother Can. 2017; 69 (5): 1–76.

41. Veldman M.P., Maffiuletti N.A., Hallett M., et al. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014; 47: 22–35.

42. Laufer Y., Elboim-Gabyzon M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair. 2011; 25 (9): 799–809.

43. Foley N., Cotoi A., Serrato J., et al. Upper extremity interventions. Evidence-Based Review of Stroke Rehabilitation. 2016; 1–184.

44. Fernandez-Tenorio E., Serrano-Munoz D., Avendano-Coy J., Gomez-Soriano J. Transcutaneous electrical nerve stimulation for spasticity: a systematic review. Neurologia. 2019; 34 (7): 451–60.

45. Schuhfried O., Crevenna R., Fialka-Moser V., Paternostro-Sluga T. Noninvasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J Rehabil Med. 2012; 44 (2): 99–105.

46. De Kroon J.R., van der Lee J.H., Jzerman M.J., Lankhorst G.J. Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil. 2002; 16 (4): 350–60.

47. Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med Sch. 2008; 75 (1): 4–14.

48. Ring H., Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 2005; 37 (1): 32–6.

49. Boldt I., Eriks-Hoogland I., Brinkhof M.W., et al. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014; 11: CD009177.

50. Brosseau L., Yonge K.A., Welch V., et al. Transcutaneous electrical nerve stimulation (TENS) for the treatment of rheumatoid arthritis in the hand. Cochrane Database Syst Rev. 2003; 3: CD004377.

51. Kroeling P., Gross A., Graham N., et al. Electrotherapy for neck pain. Cochrane Database Syst Rev. 2013; 8: CD004251.

52. Gibson W., Wand B.M., O'Connell N.E. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults. Cochrane Database Syst Rev. 2017; 9 (9): CD011976.

53. Hurlow A., Bennett M.I., Robb K.A., et al. Transcutaneous electrical nerve stimulation (TENS) for cancer pain in adults. Cochrane Database Syst Rev. 2012; 2012 (3): CD006276.

54. Johnson M.I., Claydon L.S., Herbison G.P., et al. Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults. Cochrane Database Syst Rev. 2017; 10 (10): CD012172.

55. Rutjes A.W., Nűesch E., Sterchi R., et al. Transcutaneous electrical nerve stimulation for osteoarthritis of the knee. Cochrane Database Syst Rev. 2009; 2009 (4): CD002823.

56. Khadilkar A., Odebiyi D.O., Brosseau L., Wells G.A. Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low back pain. Cochrane Database Syst Rev. 2008; 2008 (4): CD003008.

57. Gibson W., Wand B.M., Meads C., et al. Transcutaneous electrical nerve stimulation (TENS) for chronic pain –an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2019; 4 (4): CD011890.

58. Watson T., Nussbaum E.L. (Eds.). Electrophysical agents: general guidelines, contraindications and precautions. In: Electrophysical agents evidence based practice. 13th ed. Elsevier; 2020: 400–13.

59. Никитин С.С., Куренков А.Л. Магнитная стимуляция в диагностике и лечении болезней нервной системы. Руководство для врачей. М.: САШКО; 2003.

60. Chervyakov A.V., Sinitsyn D.O., Piradov M.A., Chernyavsky A.Y. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiersin Human Neuroscience. 2015; 9: 303.

61. Chen R., Seitz R.J. Changing cortical excitability with low-frequency magnetic stimulation. Neurology. 2001; 57 (3): 379–80.

62. Nowak D.A., Grefkes C., Ameli M., Fink G.R. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair. 2009; 23 (7): 641–56.

63. Червяков А.В., Пойдашева А.Г., Назарова М.А. и др. Навигационная ритмическая транскраниальная магнитная стимуляция в постинсультной реабилитации: рандомизированное слепое плацебо-контролируемое исследование. Анналы клинической и экспериментальной неврологии. 2015; 9 (4): 30–6.

64. Супонева Н.А., Бакулин И.С., Пойдашева А.Г., Пирадов М.А. Безопасность транскраниальной магнитной стимуляции: обзор международных рекомендаций и новые данные. Нервно-мышечные болезни. 2017; 7 (2): 21–36.

65. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009; 120 (12): 2008–39.

66. Prikryl R., Kucerova H. Occurrence of epileptic paroxysm during repetitive transcranial magnetic stimulation treatment. J Psychopharmacol. 2005; 19 (3): 313.

67. Lefaucheur J.P., Antal A., Ayache S.S., et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017; 128 (1): 56–92.

68. Bikson M., Grossman P., Thomas C., et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016; 9 (5): 641–61.

69. Matsumoto H., Ugawa Y. Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract. 2016; 2: 19–25.

70. Antal A., Alekseichuk I., Bikson M., et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017; 128 (9): 1774–809.

71. Хатькова С.Е., Шихкеримов Р.К., Прокопенко С.В. и др. Диагностика и лечение синдрома спастичности у взрослых пациентов с очаговыми поражениями центральной нервной системы и их последствиями в рамках оказания стационарной и амбулаторно-поликлинической медицинской помощи. Клинические рекомендации. М.; 2016.

72. Simpson D.M., Hallett M., Ashman E.J., et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016; 86 (19): 1818–26.

73. Hulme A., MacLennan W.J., Ritchie R.T., et al. Baclofen in the elderly stroke patient its side-effects and pharmacokinetics. Eur J Clin Pharmacol. 1985; 29 (4): 467–9.

74. Goldstein E.M. Spasticity management: an overview. J Child Neurol. 2001; 16 (1): 16–23.

75. Хатькова С.Е., Орлова О.Р., Боцина А.Ю. и др. Основные принципы ведения пациентов с нарушением мышечного тонуса после очагового повреждения головного мозга. Consilium Medicum. 2016; 18 (2–1): 25–33.

76. Zanaflex. URL: (дата обращения 21.03.2021).

77. Wagstaff A.J., Bryson H.M. Tizanidine: a review of its pharmacology, clinical efficacy, and tolerability in the management of spasticity associated with cerebral and spinal disorders. Drugs. 1997; 53: 435–52.

78. Тизанидин. URL: (дата обращения 21.03.2021).

79. Баклофен. URL: (дата обращения 21.03.2021).

80. De Tanti A., Scarponi F., Bertoni M., et al. Management of intrathecal baclofen therapy for severe acquired brain injury: consensus and recommendations for good clinical practice. Neurol Sci. 2017; 38 (8): 1429–35.

81. Толперизон. URL: (дата обращения 21.03.2021).

82. Ботулинический токсин типа А. URL: (дата обращения 21.03.2021).

83. Lim C.M., Kim S.W., Park J.Y., et al. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res. 2009; 87 (4): 1037–45.

84. Acler M., Robol E., Fiaschi A., Manganotti P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol. 2009; 256 (7): 1152–8.

85. Wang L.E., Fink G.R., Diekhoff S., et al. Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol. 2011; 69 (2): 375–88.

86. Chollet F., Tardy J., Albucher J.F., et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebocontrolled trial. Lancet Neurol. 2011; 10 (2): 123–30.

87. Gainotti G., Antonucci G., Marra C., Paolucci S. Relation between depression after stroke, antidepressant therapy, and functional recovery. J Neurol Neurosurg Psychiatry. 2001; 71 (2): 258–61.

88. Hatem S.M., Saussez G., Della Faille M., et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016; 10: 442.

89. Elger C.E., Johnston S.A., Hoppe C. Diagnosing and treating depression in epilepsy. Seizure. 2017; 44: 184–93.

90. Липатова Л.В., Бутома Б.Г., Капустина Т.В. Выбор антидепрессантов для лечения ассоциированных с эпилепсией депрессивных расстройств. Эпилепсия и пароксизмальные состояния. 2016; 8 (3): 34–44.

91. Флуоксетин. URL: (дата обращения 21.03.2021).

92. Эсциталопрам. URL: (дата обращения 21.03.2021).

93. Сертралин. URL: (дата обращения 21.03.2021).

94. Венлафаксин. URL: (дата обращения 21.03.2021).

95. Дулоксетин. URL: (дата обращения 21.03.2021).

96. Garfinkel D. Poly-de-prescribing to treat polypharmacy: efficacy and safety. Ther Adv Drug Saf. 2018; 9 (1): 25–43.

97. Pottie K., Thompson W., Davies S., et al. Deprescribing benzodiazepine receptor agonists: evidence-based clinical practice guideline. Can Fam Physician. 2018; 64 (5): 339–51.

98. Wu S., Kutlubaev M.A., Chun H.Y., et al. Interventions for post-stroke fatigue. Cochrane Database Syst Rev. 2015; 2015 (7): CD007030.

99. National Stroke Foundation. Clinical Guidelines for Stroke Management 2010 Melbourne Australia. URL: (дата обращения 21.03.2021).

100. Чапко И. Я., Филиппович А. Н., Перкова В. Е. Медицинская реабилитация пациентов с симптоматической эпилепсией. II Национальный конгресс с международным участием «Реабилитация – ХХI век: традиции и инновации» (сборник статей). СПб; 2018.


For citations:

Lyukmanov R.K., Rimkevichus A.A., Shalimanova E.V., Voronkova K.V., Suponeva N.A., Piradov М.А. Motor neurorehabilitation in patients with epileptic seizures: limitations of methods with proven efficacy in stroke. Epilepsy and paroxysmal conditions. 2021;13(1):51-64. (In Russ.)

Views: 995

ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)