Preview

Epilepsy and paroxysmal conditions

Advanced search

Mozart effect in patients with epilepsy

https://doi.org/10.17749/2077-8333/epi.par.con.2021.061

Full Text:

Abstract

Objective: to analyze available publications assessing efficacy of the Mozart effect in patients with epilepsy.
Material and methods. A search for scientific publications has been performed in PubMed, Scopus and eLibrary databases by retrieving inquiries "Mozart effect" and "epilepsy" in paper title, resume and keywords. As a result, 18 studies matching inclusion and exclusion criteria were selected. The data obtained were systematized into four categories: 1) whether a single listening of Mozart’s Sonata for Two Pianos in D major, K.448 affect interictal epileptiform activity (IEA) immediately during an event; 2) whether a repeated (course) of listening K.448 affect IEA; 3) is there a delayed effect on IEA after a single or repeated listening of K.448; 4) how does the Mozart effect act on rate of epileptic seizures during ongoing therapy course of listening K.448 or afterwards.
Results. It was found that therapy with Mozart’s sonata K.448 may lower IEA index during a single listening of this musical composition and shortly afterwards. A lowered IEA index during a course listening of K.448 lasting for some time afterwards may be observed as well. Moreover, a repeated listening of K.448 may reduce rate of epileptic seizures within entire music course.
Conclusion. The analysis revealed that there are currently some reasons to consider the Mozart effect as a means of neurostimulation impacting on rate of epileptic seizures and IEA.

About the Authors

Ya. B. Skiba
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации
Russian Federation

Yaroslav B. Skiba – MD, PhD, Neurologist, Gorbacheva Research Institute of Pediatric Oncology, Hematology and Trasplantology

 

WoS ResearcherID: ABC-9723-2020

Scopus Author ID: 57211950985

RSCI SPIN-code: 1273-0742



M. M. Odinak
Федеральное государственное бюджетное военное образовательное учреждение высшего образования «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Russian Federation

Miroslav M. Odinak – Dr. Med. Sc., Correspoding Member of RAS, Professor, Astvatsaturov Chair of Nervous Diseases

 

WoS ResearcherID: I-6024-2016

Scopus Author ID: 7003327776

RSCI SPIN-code: 1155-9732



A. Yu. Polushin
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации
Russian Federation

Aleksey Yu. Polushin – MD, PhD, Neurologist, Gorbacheva Research Institute of Pediatric Oncology, Hematology and Trasplantology, Assistant Professor, Chair of Neurology

 

Scopus Author ID: 57195962540

RSCI SPIN-code: 8123-7779



M. Yu. Prokudin
Федеральное государственное бюджетное военное образовательное учреждение высшего образования «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Russian Federation

Mikhail Yu. Prokudin – MD, PhD, Tutor, Astvatsaturov Chair of Nervous Diseases

 

RSCI SPIN-code: 4021-4432



M. V. Selikhova
Федеральное государственное автономное образовательное учреждение высшего образования «Российский государственный научно-исследовательский медицинский университет им. Н.И. Пирогова» Министерства здравоохранения Российской Федерации
Russian Federation

Marianna V. Selikhova – Dr. Med. Sc., Consultant Neurologist, Senior Researcher

 

Scopus Author ID: 6601975655

RSCI SPIN-code: 5951-8701



S. N. Bardakov
Федеральное государственное бюджетное военное образовательное учреждение высшего образования «Военно-медицинская академия им. С.М. Кирова» Министерства обороны Российской Федерации
Russian Federation

Sergey N. Bardakov – MD, PhD, Tutor, Chair of Nephrology and Efferent Therapy

 

Scopus Author ID: 57193732211

RSCI SPIN-code: 2351-4096



M. Yu. Ratanov
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет им. И.М. Сеченова» Министерства здравоохранения Российской Федерации
Russian Federation

Mikhail Yu. Ratanov – Postgraduate, Chair of Nervous Diseases and Neurosurgery

 

RSCI SPIN-code: 9922-1041



V. I. Pustovoyt
Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» Федерального медико-биологического агентства России
Russian Federation

Vasiliy I. Pustovoyt – MD, PhD, Junior Researcher, Laboratory of Big Data and Precise Sports Medicine

 

RSCI SPIN-code: 2079-1027



References

1. Naumov K.M., Filippov A.O. Translingual electricalstimulation in the complex system of restoring the function of maintaining balance in patients with the consequences of acute cerebral circulation disorders. Izvestia of the Russian Military Medical Academy. 2020; 1 (S1): 94–8 (in Russ.)

2. McNally M.A., Hartman A.L. Ketone bodies in epilepsy. J Neurochem. 2012; 121 (1): 28–35. https://doi.org/10.1111/j.1471-4159.2012.07670.x.

3. Jenkins J.S. The Mozart effect. J R Soc Med. 2001; 94 (4): 170–2. https://doi.org/10.1177/014107680109400404.

4. Talero-Gutiérrez C., Zarruk-Serrano J.G., Espinosa-Bode A. Musical perception and cognitive functions. Is there such a thing as the Mozart effect? Rev Neurol. 2004; 39 (12): 1167–73 (in Spanish). https://doi.org/10.33588/rn.3912.2004467.

5. Rauscher F.H., Shaw G.L., Ky K.N. Music and spatial task performance. Nature. 1993; 365 (6447): 611. https://doi.org/10.1038/365611a0.

6. Zimmermann M.B., Diers K., Strunz L., et al. Listening to Mozart improves current mood in adult ADHD – a randomized controlled pilot study. Front Psychol. 2019; 10: 1104. https://doi.org/10.3389/fpsyg.2019.01104.

7. Attanasio G., Cartocci G., Covelli E., et al. The Mozart effect in patients suffering from tinnitus. Acta Otolaryngol. 2012; 132 (11): 1172–7. https://doi.org/10.3109/00016489.2012.684398.

8. Cacciafesta M., Ettorre E., Amici A., et al. New frontiers of cognitive rehabilitation in geriatric age: the Mozart Effect (ME). Arch Gerontol Geriatr. 2010; 51 (3): e79–82. https://doi.org/10.1016/j.archger.2010.01.001.

9. De Bartolo D., Morone G., Giordani G., et al. Effect of different music genres on gait patterns in Parkinson's disease. Neurol Sci. 2020; 41 (3): 575–82. https://doi.org/10.1007/s10072-019-04127-4.

10. Victorino D.B., Scorza C.A., Fiorini A.C., et al. “Mozart effect” for Parkinson's disease: music as medicine. Neurol Sci. 2021; 42 (1): 319–20. https://doi.org/10.1007/s10072-020-04537-9.

11. Gasenzer E.R., Kanat A., Neugebauer E. Neurosurgery and music; effect of Wolfgang Amadeus Mozart. World Neurosurg. 2017; 102: 313–9. https://doi.org/10.1016/j.wneu.2017.02.081.

12. Xing Y., Xia Y., Kendrick K., et al. Mozart, Mozart rhythm and retrograde Mozart effects: evidences from behaviours and neurobiology bases. Sci Rep. 2016; 6: 18744. https://doi.org/10.1038/srep18744.

13. Pauwels E.K., Volterrani D., Mariani G., Kostkiewics M. Mozart, music and medicine. Med Princ Pract. 2014; 23 (5): 403–12. https://doi.org/10.1159/000364873.

14. Lemmer B. Effects of music composed by Mozart and Ligeti on blood pressure and heart rate circadian rhythms in normotensive and hypertensive rats. Chronobiol Int. 2008; 25 (6): 971–86. https://doi.org/10.1080/07420520802539415.

15. van Esch R.J., Shi S., Bernas A., et al. A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect. Comput Biol Med. 2020; 127: 104055. https://doi.org/10.1016/j.compbiomed.2020.104055.

16. Paprad T., Veeravigrom M., Desudchit T. Effect of Mozart K.448 on interictal epileptiform discharges in children with epilepsy: a randomized controlled pilot study. Epilepsy Behav. 2021; 114 (Pt. A): 107177. https://doi.org/10.1016/j.yebeh.2020.107177.

17. Bedetti C., D’Alessandro P., Piccirilli M., et al. Mozart’s music and multidrug-resistant epilepsy: a potential EEG index of therapeutic effectiveness. Psychiatr Danub. 2018; 30 (Suppl. 7): 567–71.

18. Turner R.P. The acute effect of music on interictal epileptiform discharges. Epilepsy Behav. 2004; 5 (5): 662–8. https://doi.org/10.1016/j.yebeh.2004.07.003.

19. Lin L.C., Lee W.T., Wu H.C., et al. Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics. Epilepsy Res. 2010; 89 (2-3): 238–45. https://doi.org/10.1016/j.eplepsyres.2010.01.007.

20. Lin L.C., Lee M.W., Wei R.C., et al. Mozart k.545 mimics mozart k.448 in reducing epileptiform discharges in epileptic children. Evid Based Complement Alternat Med. 2012; 2012: 607517. https://doi.org/10.1155/2012/607517.

21. Sesso G., Sicca F. Safe and sound: meta-analyzing the Mozart effect on epilepsy. Clin Neurophysiol. 2020; 131 (7): 1610–20. https://doi.org/10.1016/j.clinph.2020.03.039.

22. Lin L.C., Lee W.T., Wu H.C., et al. The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy. Epilepsy Behav. 2011; 21 (4): 420–4. https://doi.org/10.1016/j.yebeh.2011.05.015.

23. Lin L.C., Ouyang C.S., Chiang C.T., et al. Early evaluation of the therapeutic effectiveness in children with epilepsy by quantitative EEG: a model of Mozart K.448 listening – a preliminary study. Epilepsy Res. 2014; 108 (8): 1417–26. https://doi.org/10.1016/j.eplepsyres.2014.06.020.

24. Grylls E., Kinsky M., Baggott A., et al. Study of the Mozart effect in children with epileptic electroencephalograms. Seizure. 2018; 59: 77–81. https://doi.org/10.1016/j.seizure.2018.05.006.

25. Rafiee M., Patel K., Groppe D.M., et al. Daily listening to Mozart reduces seizures in individuals with epilepsy: a randomized control study. Epilepsia Open. 2020; 5 (2): 285–94. https://doi.org/10.1002/epi4.12400.

26. Coppola G., Toro A., Operto F.F., et al. Mozart’s music in children with drug-refractory epileptic encephalopathies. Epilepsy Behav. 2015; 50: 18–22. https://doi.org/10.1016/j.yebeh.2015.05.038.

27. Coppola G., Operto F.F., Caprio F., et al. Mozart’s music in children with drug-refractory epileptic encephalopathies: comparison of two protocols. Epilepsy Behav. 2018; 78: 100–3. https://doi.org/10.1016/j.yebeh.2017.09.028.

28. D’Alessandro P., Giuglietti M., Baglioni A., et al. Effects of music on seizure frequency in institutionalized subjects with severe/profound intellectual disability and drug-resistant epilepsy. Psychiatr Danub. 2017; 29 (Suppl. 3): 399–404.

29. Bodner M., Turner R.P., Schwacke J., et al. Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial. PLoS One. 2012; 7 (10): e45303. https://doi.org/10.1371/journal.pone.0045303.

30. Brackney D.E., Brooks J.L. Complementary and alternative medicine: the Mozart effect on childhood epilepsy – a systematic review. J Sch Nurs. 2018; 34 (1): 28–37. https://doi.org/10.1177/1059840517740940.

31. Lin L.C., Lee M.W., Wei R.C., et al. Mozart K.448 listening decreased seizure recurrence and epileptiform discharges in children with first unprovoked seizures: a randomized controlled study. BMC Complement Altern Med. 2014; 14: 17. https://doi.org/10.1186/1472-6882-14-17.

32. Kuester G., Rios L., Ortiz A., Miranda M. Effect of music on the recovery of a patient with refractory nonconvulsive status epilepticus. Epilepsy Behav. 2010; 18 (4): 491–3. https://doi.org/10.1016/j.yebeh.2010.06.001.

33. Miranda M., Kuester G., Ríos L., et al. Refractory nonconvulsive status epilepticus responsive to music as an add-on therapy: a second case. Epilepsy Behav. 2010; 19 (3): 539–40. https://doi.org/10.1016/j.yebeh.2010.07.025.

34. Hughes J.R., Daaboul Y., Fino J.J., Shaw G.L. The “Mozart effect” on epileptiform activity. Clin Electroencephalogr. 1998; 29 (3): 109–19. https://doi.org/10.1177/155005949802900301.

35. Bauer S., Baier H., Baumgartner C., et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016; 9 (3): 356–63. https://doi.org/10.1016/j.brs.2015.11.003.

36. Penfield W., Jasper H.H. Epilepsy and the functional anatomy of the human brain. 2nd ed. Boston: W. Little, Brown and Co.; 1954.

37. Kisten O.V., Evstigneev V.V. Probable anticonvulsive mechanisms of repetitive transcranial magnetic stimulation and predictors of its effectivity. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2014; 6 (1): 19–26 (in Russ.).

38. Maguire M.J. Music and epilepsy: a critical review. Epilepsia. 2012; 53 (6): 947–61. https://doi.org/10.1111/j.1528-1167.2012.03523.x.

39. Generalov V.O., Sadykov T.R., Kazakova Yu.V., et al. Musicogenic epilepsy. a review of the literature and a case report. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions.. 2018; 10 (1): 25–34 (in Russ.). https://doi.org/10.17749/2077-8333.2018.10.1.025-034

40. Wolf P. Reflex epileptic mechanisms in humans: lessons about natural ictogenesis. Epilepsy Behav. 2017; 71 (Pt. B): 118–23. https://doi.org/10.1016/j.yebeh.2015.01.009.

41. Thompson B.M., Andrews S.R. An historical commentary on the physiological effects of music: Tomatis, Mozart and neuropsychology. Integr Physiol Behav Sci. 2000; 35 (3): 174–88. https://doi.org/10.1007/BF02688778.

42. Maguire M. Music and its association with epileptic disorders. Prog Brain Res. 2015; 217: 107–27. https://doi.org/10.1016/bs.pbr.2014.11.023.

43. Anderson W.S., Kudela P., Weinberg S., et al. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation. Epilepsy Res. 2009; 84 (1): 42–55. https://doi.org/10.1016/j.eplepsyres.2008.12.005.

44. Lin L.C., Chiang C.T., Lee M.W., et al. Parasympathetic activation is involved in reducing epileptiform discharges when listening to Mozart music. Clin Neurophysiol. 2013; 124 (8): 1528–35. https://doi.org/10.1016/j.clinph.2013.02.021.

45. Yuen A.W., Sander J.W. Can natural ways to stimulate the vagus nerve improve seizure control? Epilepsy Behav. 2017; 67: 105–10. https://doi.org/10.1016/j.yebeh.2016.10.039.

46. Simon P., Szabo T. Music: social impacts, health benefits and perspectives. New York: Nova Publishers; 2013.

47. Fedi M., Berkovic S.F., Scheffer I.E., et al. Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2008; 71 (11): 795–8. https://doi.org/10.1212/01.wnl.0000316192.52731.77.

48. Ciumas C., Wahlin T.B., Jucaite A., et al. Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology. 2008; 71 (11): 788–94. https://doi.org/10.1212/01.wnl.0000316120.70504.d5.

49. Krylov V.V., Trifonov I.S., Kochetkova O.O. К448. The Russian Journal of Neurosurgery. 2016; 4: 115–21 (in Russ.).

50. Hammond D.C., Walker J., Hoffman D., et al. Standards for the use of quantitative electroencephalography (QEEG) in neurofeedback: a position paper of the International Society for Neuronal Regulation. J Neurother. 2004; 8 (1): 5–27. https://doi.org/10.1300/J184v08n01_02.

51. Verrusio W., Ettorre E., Vicenzini E., et al. The Mozart effect: a quantitative EEG study. Conscious Cogn. 2015; 35: 150–5. https://doi.org/10.1016/j.concog.2015.05.005.

52. Bodner M., Muftuler L.T., Nalcioglu O., Shaw G.L. FMRI study relevant to the Mozart effect: brain areas involved in spatial-temporal reasoning. Neurol Res. 2001; 23 (7): 683–90. https://doi.org/10.1179/016164101101199108.

53. Metcalf C.S., Huntsman M., Garcia G., et al. Music-enhanced analgesia and antiseizure activities in animal models of pain and epilepsy: toward preclinical studies supporting development of digital therapeutics and their combinations with pharmaceutical drugs. Front Neurol. 2019; 10: 277. https://doi.org/10.3389/fneur.2019.00277.

54. Afra P., Bruggers C.S., Sweney M., et al. Mobile Software as a Medical Device (SaMD) for the treatment of epilepsy: development of digital therapeutics comprising behavioral and music-based interventions for neurological disorders. Front Hum Neurosci. 2018; 12: 171. https://doi.org/10.3389/fnhum.2018.00171


For citation:


Skiba Y.B., Odinak M.M., Polushin A.Yu., Prokudin M.Yu., Selikhova M.V., Bardakov S.N., Ratanov M.Yu., Pustovoyt V.I. Mozart effect in patients with epilepsy. Epilepsy and paroxysmal conditions. 2021;13(3):264-273. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2021.061

Views: 237


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)