Posttraumatic epilepsy: clinical, diagnostic and therapeutic features
https://doi.org/10.17749/2077-8333/epi.par.con.2021.100
Abstract
According to 2019 statistics records, traumatic brain injuries (TBI) are the most common type of injuries and one of the main causes for disability in Russia. Every year 200 people per 10,000 subjects around the world suffer from serious brain injuries. Severe TBI can result in long-term disability. Posttraumatic epilepsy (PTE) is one of the most dramatic consequences of TBI with an estimated incidence rate ranging from 2% to 50% based on severity of injury. Conducting studies on PTE poses numerous challenges because epilepsy never develops in many patients with TBI or it may occur more than 10 years after TBI.
In this review, which includes data from studies conducted by Russian researchers, including us, and foreign colleagues over the last few years (mainly 2017–2022), we analyzed and generalized currently known risk factors, clinical and diagnostic features of PTE in order to increase the awareness about modern methods of laboratory and instrumental diagnostics related to this disease (including electroencephalography and routine/special neuroimaging techniques that allow to identify PTE biomarkers). We also aimed to promote development of preventive strategies for patient management. It has been proved that no clear algorithms for PTE diagnostics and treatment are currently available, which often leads to insufficient patient care.
About the Authors
N. E. MaslovRussian Federation
Nikita E. Maslov – Resident, Chair of Radiology and Medical Imaging
RSCI SPIN-code: 1422-8694
2 Akkuratov Str., Saint Petersburg 197341
A. A. Litvinova
Russian Federation
Aleksandra A. Litvinova – 5th Year Medical Student, Faculty of General Medicine
Scopus Author ID: 57226671098; RSCI SPIN-code: 2234-7591
28 Krupskaya Str., Smolensk 214019
P. S. Kovalev
Russian Federation
Pavel S. Kovalev – Assistant Professor, Chair of Neurology and Neurosurgery
RSCI SPIN-code: 5550-8970
28 Krupskaya Str., Smolensk 214019
N. N. Maslova
Russian Federation
Natalia N. Maslova – Dr. Med. Sc., Professor, Chief of Chair of Neurology and Neurosurgery
Scopus Author ID: 7005487934; RSCI SPIN-code: 3051-4884
28 Krupskaya Str., Smolensk 214019
N. V. Yuryeva
Russian Federation
Natalia V. Yuryeva – MD, PhD, Associate Professor, Chair of Neurology and Neurosurgery
RSCI SPIN-code: 4193-3595
28 Krupskaya Str., Smolensk 214019
E. I. Khamtsova
Russian Federation
Elena I. Khamtsova – MD, PhD, Associate Professor, Chair of Neurology and Neurosurgery
RSCI SPIN-code: 4091-5210
28 Krupskaya Str., Smolensk 214019
References
1. Christensen J. The epidemiology of posttraumatic epilepsy. Semin Neurol. 2015; 35 (3): 218–22. https://doi.org/10.1055/s-0035-1552923.
2. Taylor C.A., Bell J.M., Breiding M.J., Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. Surveill Summ. 2017; 66 (9): 1–16. https://doi.org/10.15585/mmwr.ss6609a1.
3. Sharma S., Tiarks G., Haight J., Bassuk A.G. Neuropathophysiological mechanisms and treatment strategies for post-traumatic epilepsy. Front Mol Neurosci. 2021; 14: 612073. https://doi.org/10.3389/fnmol.2021.612073.
4. Ritter A.C., Wagner A.K., Fabio A., et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: a traumatic brain injury model systems study. Epilepsia. 2016; 57 (12): 1968–77. https://doi.org/10.1111/epi.13582.
5. Brown J.W., Lawn N.D., Lee J., Dunne J.W. When is it safe to return to driving following first-ever seizure? J Neurol Neurosurg Psychiatry. 2015; 86 (1): 60–4. https://doi.org/10.1136/jnnp-2013-307529.
6. Kaur P., Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018; 16 (8): 1224–38. https://doi.org/10.2174/1570159X15666170613083606.
7. Maslova N.N., Skorobogatova V.A. Compliance in epileptology: a modern view of the problem and strategies for its optimization. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2020; 12 (1): 74–81 (in Russ.). https://doi.org/10.17749/2077-8333.2020.12.1.74-81.
8. Karlov V.A. Epilepsy in children and adult women and men. A guide for doctors. 2nd ed. Мoscow; 2019: 896 pp. (in Russ.).
9. Fordington S., Manford M. A review of seizures and epilepsy following traumatic brain injury. J Neurol. 2020; 267 (10): 3105–11. https://doi.org/10.1007/s00415-020-09926-w.
10. Grinenko O.A., Zaitsev O.S., Oknina L.B., et al. Posttraumatic epilepsy: diagnosis and treatment. Neurology, Neuropsychiatry, Psychosomatics. 2015; 3: 13–7 (in Russ.).
11. Zhao Y., Wu H., Wang X., et al. Clinical epidemiology of posttraumatic epilepsy in a group of Chinese patients. Seizure. 2012; 21 (5): 322–6. https://doi.org/10.1016/j.seizure.2012.02.007.
12. Mazzini L., Cossa F.M., Angelino E., et al. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia. 2003; 44 (4): 569–74. https://doi.org/10.1046/j.1528-1157.2003.34902.x.
13. Siig Hausted H., Nielsen J.F., Odgaard L. Epilepsy after severe traumatic brain injury: frequency and injury severity. Brain Inj. 2020; 34 (7): 889–94. https://doi.org/10.1080/02699052.2020.1763467.
14. Levin H.S., O'Donnell V.M., Grossman R.G. The Galveston Orientation and Amnesia Test. A practical scale to assess cognition after head injury. J Nerv Ment Dis. 1979; 167 (11): 675–84. https://doi.org/10.1097/00005053-197911000-00004.
15. Xu T., Yu X., Ou S., et al. Risk factors for posttraumatic epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 2017; 67: 1–6. https://doi.org/10.1016/j.yebeh.2016.10.026.
16. Shishmanidi A.K., Karpov S.M., Vyshlova I.A., et al. Neurotrauma as a factor of epileptogenesis. The Korsakov’s Journal of Neurology and Psychiatry. 2018; 118 (10): 90–2 (in Russ.). https://doi.org/10.17116/jnevro201811810190.
17. Chen W., Li M.D., Wang G.F., et al. Risk of post-traumatic epilepsy after severe head injury in patients with at least one seizure. Neuropsychiatr Dis Treat. 2017; 13: 2301–6. https://doi.org/10.2147/NDT.S141486.
18. Tubi M.A., Lutkenhoff E., Blanco M.B., et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol Dis. 2019; 123: 115–21. https://doi.org/10.1016/j.nbd.2018.05.014.
19. Liu Z., Chen Q., Chen Z., et al. Clinical analysis on risk factors and prognosis of early post-traumatic epilepsy. Arq Neuropsiquiatr. 2019; 77 (6): 375–80. https://doi.org/10.1590/0004-282X20190071.
20. Lasry O., Liu E.Y., Powell G.A., et al. Epidemiology of recurrent traumatic brain injury in the general population: a systematic review. Neurology. 2017; 89 (21): 2198–209. https://doi.org/10.1212/WNL.0000000000004671.
21. Dadas A., Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019; 123: 20–6. https://doi.org/10.1016/j.nbd.2018.06.022.
22. Krylov V.V., Teplyshova A.M., Mutaeva R.Sh., et al. Posttraumatic seizures: a prospective cohort study. The Korsakov’s Journal of Neurology and Psychiatry. 2018; 118 (10): 3–8 (in Russ.). https://doi.org/10.17116/jnevro20181181023.
23. Anderson G.D., Temkin N.R., Dikmen S.S., et al. Haptoglobin phenotype and apolipoprotein E polymorphism: relationship to posttraumatic seizures and neuropsychological functioning after traumatic brain injury. Epilepsy Behav. 2009; 16 (3): 501–6. https://doi.org/10.1016/j.yebeh.2009.08.025.
24. Karlander M., Ljungqvist J., Zelano J. Post-traumatic epilepsy in adults: a nationwide register-based study. J Neurol Neurosurg Psychiatry. 2021; 92 (6): 617–21. https://doi.org/10.1136/jnnp-2020-325382.
25. Zakharov A.V., Poverennova I.E., Kurov M.V., Khivintseva E.V. Clinical and instrumental risk factors for epileptic seizures in patients after traumatic brain injury. Saratov Journal of Medical Scientific Research. 2016; 12 (3): 366–70 (in Russ.).
26. Mendonça G.S., Sander J.W. Post traumatic epilepsy: there is still much to learn. Arq Neuropsiquiatr. 2019; 77 (6): 373–4. https://doi.org/10.1590/0004-282X20190068.
27. Johnson V.E., Weber M.T., Xiao R., et al. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 2018; 135 (5): 711–26. https://doi.org/10.1007/s00401-018-1824-0.
28. Shi Z.S., Duckwiler G.R., Jahan R., et al. Early blood-brain barrier disruption after mechanical thrombectomy in acute ischemic stroke. J Neuroimaging. 2018; 28 (3): 283–8. https://doi.org/10.1111/jon.12504.
29. Dalal P.J., Muller W.A., Sullivan D.P. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol. 2020; 190 (3): 535–42. https://doi.org/10.1016/j.ajpath.2019.11.004.
30. Cerutti C., Ridley A.J. Endothelial cell-cell adhesion and signaling. Exp Cell Res. 2017; 358 (1): 31–8. https://doi.org/10.1016/j.yexcr.2017.06.003.
31. Avakyan G.N., Yudelson Ya.B., Maslova N.N., Gusev E.I. Pathogenesis and treatment of epilepsy. The Korsakov’s Journal of Neurology and Psychiatry. 2003; 9: 9–15 (in Russ.).
32. Wang A., Zhu G., Qian P., Zhu T. Tetramethylpyrazine reduces blood-brain barrier permeability associated with enhancement of peripheral cholinergic anti-inflammatory effects for treating traumatic brain injury. Exp Ther Med. 2017; 14 (3): 2392–400. https://doi.org/10.3892/etm.2017.4754.
33. Scholl U.I., Choi M., Liu T., et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA. 2009; 106 (14): 5842–7. https://doi.org/10.1073/pnas.0901749106.
34. Buono R.J., Lohoff F.W., Sander T., et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 2004; 58 (2-3): 175–83. https://doi.org/10.1016/j.eplepsyres.2004.02.003.
35. Iffland P., Grant G.G., Janigro D. Mechanisms of cerebral edema leading to early seizures after traumatic brain injury In: Lo E., Lok J., Ning M., Whalen M. (Eds.) Vascular mechanisms in CNS trauma. New York: Springer; 2014: 29–36. https://doi.org/10.1007/978-1-4614-8690-9_2.
36. Weissberg I., Wood L., Kamintsky L., et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015; 78: 115–25. https://doi.org/10.1016/j.nbd.2015.02.029.
37. Vespa P.M., Shrestha V., Abend N., et al. The epilepsy bioinformatics study for anti-epileptogenic therapy (EpiBioS4Rx) clinical biomarker: Study design and protocol. Neurobiol Dis. 2019; 123: 110–4. https://doi.org/10.1016/j.nbd.2018.07.025.
38. Piccenna L., Shears G., O'Brien T.J. Management of post-traumatic epilepsy: an evidence review over the last 5 years and future directions. Epilepsia Open. 2017; 2 (2): 123–44. https://doi.org/10.1002/epi4.12049.
39. Bragin A., Li L., Almajano J., et al. Pathologic electrographic changes after experimental traumatic brain injury. Epilepsia. 2016; 57 (5): 735–45. https://doi.org/10.1111/epi.13359.
40. Milikovsky D.Z., Weissberg I., Kamintsky L., et al. Electrocorticographic dynamics as a novel biomarker in five models of epileptogenesis. J Neurosci. 2017; 37 (17): 4450–61. https://doi.org/10.1523/JNEUROSCI.2446-16.2017.
41. Garner R., La Rocca M., Vespa P., et al. Imaging biomarkers of posttraumatic epileptogenesis. Epilepsia. 2019; 60 (11): 2151–62. https://doi.org/10.1111/epi.16357.
42. Duncan D., Barisano G., Cabeen R., et al. Analytic tools for post-traumatic epileptogenesis biomarker search in multimodal dataset of an animal model and human patients. Front Neuroinform. 2018; 12: 86. https://doi.org/10.3389/fninf.2018.00086.
43. Crone J.S., Bio B.J., Vespa P.M., et al. Restoration of thalamo-cortical connectivity after brain injury: recovery of consciousness, complex behavior, or passage of time? J Neurosci Res. 2018; 96 (4): 671–87. https://doi.org/10.1002/jnr.24115.
44. Lutkenhoff E.S., McArthur D.L., Hua X., et al. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. Neuroimage Clin. 2013; 3: 396–404. https://doi.org/10.1016/j.nicl.2013.09.010.
45. Tubi M.A., Lutkenhoff E., Blanco M.B., et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol Dis. 2019; 123: 115–21. https://doi.org/10.1016/j. nbd.2018.05.014.
46. Mckee A.C., Daneshvar D.H. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015; 127: 45–66. https://doi.org/10.1016/B978-0-444-52892-6.00004-0.
47. Yuh E.L., Mukherjee P., Lingsma H.F., et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2013; 73 (2): 224–35. https://doi.org/10.1002/ana.23783.
48. Englander J., Bushnik T., Duong T.T., et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003; 84 (3): 365–73. https://doi.org/10.1053/apmr.2003.50022.
49. D’Alessandro R., Tinuper P., Ferrara R., et al. CT scan prediction of late post-traumatic epilepsy. J Neurol Neurosurg Psychiatry. 1982; 45 (12): 1153–5. https://doi.org/10.1136/jnnp.45.12.1153.
50. D’Alessandro R., Ferrara R., Benassi G., et al. Computed tomographic scans in posttraumatic epilepsy. Arch Neurol. 1988; 45 (1): 42–3. https://doi.org/10.1001/archneur.1988.00520250048019.
51. Agoston D.V., Vink R., Helmy A., et al. How to translate time: the temporal aspects of rodent and human pathobiological processes in traumatic brain injury. J Neurotrauma. 2019; 36 (11): 1724–37. https://doi.org/10.1089/neu.2018.6261.
52. Cornford E.M., Oldendorf W.H. Epilepsy and the blood-brain barrier. Adv Neurol. 1986; 44: 787–812.
53. Seiffert E., Dreier J.P., Ivens S., et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004; 24 (36): 7829–36. https://doi.org/10.1523/JNEUROSCI.1751-04.2004.
54. Dadas A., Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019; 123: 20–6. https://doi.org/10.1016/j.nbd.2018.06.022.
55. Librizzi L., Noè F., Vezzani A., et al. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol. 2012; 72 (1): 82–90. https://doi.org/10.1002/ana.23567.
56. van Vliet E.A., da Costa Araújo S., Redeker S., et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007; 130 (Pt. 2): 521–34. https://doi.org/10.1093/brain/awl318.
57. Mendes N.F., Pansani A.P., Carmanhães E.R.F., et al. The blood-brain barrier breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. Front Neurol. 2019; 10: 382. https://doi.org/10.3389/fneur.2019.00382.
58. Bar-Klein G., Lublinsky S., Kamintsky L., et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017; 140 (6): 1692–705. https://doi.org/10.1093/brain/awx073.
59. Tomkins O., Feintuch A., Benifla M., et al. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011; 2011: 765923. https://doi.org/10.1155/2011/765923.
60. Shultz S.R., Cardamone L., Liu Y.R., et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2013; 54 (7): 1240–50. https://doi.org/10.1111/ epi.12223.
61. Kharatishvili I., Immonen R., Gröhn O., Pitkänen A. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain. 2007; 130 (Pt. 12): 3155–68. https://doi.org/10.1093/brain/awm268.
62. Immonen R., Kharatishvili I., Gröhn O., Pitkänen A. MRI biomarkers for post-traumatic epileptogenesis. J Neurotrauma. 2013; 30 (14): 1305–9. https://doi.org/10.1089/neu.2012.2815.
63. Kumar R., Gupta R.K., Husain M., et al. Magnetization transfer MR imaging in patients with posttraumatic epilepsy. AJNR Am J Neuroradiol. 2003; 24 (2): 218–24.
64. Marchi N., Granata T., Ghosh C., Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012; 53 (11): 1877–86. https://doi.org/10.1111/j.1528-1167.2012.03637.x.
65. Gupta R.K., Saksena S., Agarwal A., et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia. 2005; 46 (9): 1465–71. https://doi.org/10.1111/j.1528-1167.2005.01205.x.
66. Irimia A., Goh S.Y., Torgerson C.M., et al. Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness and connectivity after traumatic brain injury. J Neurosurg Sci. 2014; 58 (3): 129–44.
67. Coulter D.A., Rafiq A., Shumate M., et al. Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res. 1996; 26 (1): 81–91. https://doi.org/10.1016/s0920-1211(96)00044-7.
68. Immonen R., Harris N.G., Wright D., et al. Imaging biomarkers of epileptogenecity after traumatic brain injury – preclinical frontiers. Neurobiol Dis. 2019; 123: 75–85. https://doi.org/10.1016/j.nbd.2018.10.008.
69. Laitinen T., Sierra A., Bolkvadze T., et al. Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Front Neurosci. 2015; 9: 128. https://doi.org/10.3389/fnins.2015.00128.
70. Laitinen T., Sierra A., Pitkänen A., Gröhn O. Diffusion tensor MRI of axonal plasticity in the rat hippocampus. Neuroimage. 2010; 51 (2): 521–30. https://doi.org/10.1016/j.neuroimage.2010.02.077.
71. Salo R.A., Miettinen T., Laitinen T., et al. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis. Neuroimage. 2017; 152: 221–36. https://doi.org/10.1016/j.neuroimage.2017.03.003.
72. Bendlin B.B., Ries M.L., Lazar M., et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008; 42 (2): 503–14. https://doi.org/10.1016/j.neuroimage.2008.04.254.
73. Sidaros A., Engberg A.W., Sidaros K., et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008; 131 (Pt. 2): 559–72. https://doi.org/10.1093/brain/awm294.
74. Kraus M.F., Susmaras T., Caughlin B.P., et al. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007; 130 (Pt. 10): 2508–19. https://doi.org/10.1093/brain/awm216.
75. Irimia A., Wang B., Aylward S.R., et al. Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin. 2012; 1 (1): 1–17. https://doi.org/10.1016/j.nicl.2012.08.002.
76. Blumbergs P.C., Scott G., Manavis J., et al. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995; 12 (4): 565–72. https://doi.org/10.1089/neu.1995.12.565.
77. Alstott J., Breakspear M., Hagmann P., et al. Modeling the impact of lesions in the human brain. PLoS Comput Biol. 2009; 5 (6): e1000408. https://doi.org/10.1371/journal.pcbi.1000408.
78. Mishra A.M., Bai H., Gribizis A., Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett. 2011; 497 (3): 194–204. https://doi.org/10.1016/j.neulet.2011.01.076.
79. Gröhn O., Sierra A., Immonen R., et al. Multimodal MRI assessment of damage and plasticity caused by status epilepticus in the rat brain. Epilepsia. 2011; 52 (Suppl. 8): 57–60. https://doi.org/10.1111/j.1528-1167.2011.03239.x.
80. Sharp D.J., Beckmann C.F., Greenwood R., et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011; 134 (Pt. 8): 2233–47. https://doi.org/10.1093/brain/awr175.
81. Palacios E.M., Sala-Llonch R., Junque C., et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol. 2013; 70 (7): 845–51. https://doi.org/10.1001/jamaneurol.2013.38.
82. Harris N.G., Verley D.R., Gutman B.A., et al. Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol. 2016; 277: 124–38. https://doi.org/10.1016/j.expneurol.2015.12.020.
83. Mishra A.M., Bai X., Sanganahalli B.G., et al. Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One. 2014; 9 (4): e95280. https://doi.org/10.1371/journal.pone.0095280.
84. Iraji A., Benson R.R., Welch R.D., et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J Neurotrauma. 2015; 32 (14): 1031–45. https://doi.org/10.1089/neu.2014.3610.
85. Johnson B., Zhang K., Gay M., et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage. 2012; 59 (1): 511–8. https://doi.org/10.1016/j.neuroimage.2011.07.081.
86. Mayer A.R., Ling J.M., Allen E.A., et al. Static and dynamic intrinsic connectivity following mild traumatic brain injury. J Neurotrauma. 2015; 32 (14): 1046–55. https://doi.org/10.1089/neu.2014.3542.
87. Zhou Y., Milham M.P., Lui Y.W., et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012; 265 (3): 882–92. https://doi.org/10.1148/radiol.12120748.
88. Xiao H., Yang Y., Xi J.H., Chen Z.Q. Structural and functional connectivity in traumatic brain injury. Neural Regen Res. 2015; 10 (12): 2062–71. https://doi.org/10.4103/1673-5374.172328.
89. O’Neill T.J., Davenport E.M., Murugesan G., et al. Applications of resting state functional MR imaging to traumatic brain injury. Neuroimaging Clin N Am. 2017; 27 (4): 685–96. https://doi.org/10.1016/j.nic.2017.06.006.
90. Simister R.J., Woermann F.G., McLean M.A., et al. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia. 2002; 43 (9): 1021–31. https://doi.org/10.1046/j.1528-1157.2002.50701.x.
91. Overcoming challenges in the evaluayion of suspected mild traumatic brain injury (mTBI). Available at: https://www.pointofcare.abbott/us/en/overcoming-challenges-evaluation-mild-traumatic-brain-injury (accessed 28.08.2021).
92. Mee H., Kolias A.G., Chari A., et al. Pharmacological management of post-traumatic seizures in adults: current practice patterns in the UK and the Republic of Ireland. Acta Neurochir (Wien). 2019; 161 (3): 457–64. https://doi.org/10.1007/s00701-018-3683-9.
93. Pechadre J.C., Lauxerois M., Colnet G., et al. Prevention of late post-traumatic epilepsy by phenytoin in severe brain injuries. 2 years' follow-up. Presse Med. 1991; 20 (18): 841–5 (in French).
94. Barrett J.P., Henry R.J., Shirey K.A., et al. Interferon-β plays a detrimental role in experimental traumatic brain injury by enhancing neuroinflammation that drives chronic neurodegeneration. J Neurosci. 2020; 40 (11): 2357–70. https://doi.org/10.1523/JNEUROSCI.2516-19.2020.
95. Ma M.W., Wang J., Zhang Q., et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017; 12 (1): 7. https://doi.org/10.1186/s13024-017-0150-7.
96. Maqbool A., Watt N.T., Haywood N., et al. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol. 2020; 319 (1): C64–74. https://doi.org/10.1152/ajpcell.00389.2019.
Review
For citations:
Maslov N.E., Litvinova A.A., Kovalev P.S., Maslova N.N., Yuryeva N.V., Khamtsova E.I. Posttraumatic epilepsy: clinical, diagnostic and therapeutic features. Epilepsy and paroxysmal conditions. 2021;13(4):377-392. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2021.100

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.