Preview

Epilepsy and paroxysmal conditions

Advanced search

Myoclonic epilepsy with ragged red fibers in childhood

https://doi.org/10.17749/2077-8333/epi.par.con.2022.111

Abstract

Myoclonic epilepsy with ragged  red fibers (MERRF) is a maternally inherited disease characterized by myoclonic epilepsy, cerebellar ataxia and progressive muscle weakness. Development of the disease is associated with the most common  (90% of cases)  point mutation at position 8344 in the mitochondrial lysine transport RNA gene – MTTLys. The disease diagnostics causes  certain difficulties due to the insufficient awareness of this pathology and polymorphism of clinical manifestations. The article presents a brief review of the literature data on current views on the disease pathogenesis, diagnostic methods and opportunities for drug treatment, and describes a clinical observation of a 7-year-old child with MERRF syndrome caused by a point  mutation  at position 8344  in the MTTLys gene.  The girl was under dynamic  supervision  at the neuropsychiatric department.  A comprehensive clinical, laboratory and instrumental examination was carried out that also included molecular genetic testing. The progredient progression and multiple symptoms of the disease, slightly increased lactate acidosis in the absence of typical neuroimaging and electromyographic changes are of interest in the observation, thereby confirming they might not necessarily be observed in MERRF. Intrafamily clinical diversity was noted in the absence of signs of the disease in paired mother.  A highly informative  method of MERRF diagnostics is provided by molecular genetic testing. Establishing a genetic diagnosis underlies a need for conducting medical and genetic counseling for family planning to prevent the re-birth of other sick siblings inheriting this pathology.

About the Authors

Z. G. Tadtaeva
Saint Petersburg Pediatric Medical University
Russian Federation

Zara G. Tadtaeva  – Dr. Med. Sc., Professor, Chair of Pharmacology with the Course of Clinical Pharmacology and Pharmacoeconomics, Saint Petersburg  Pediatric Medical University.

2 Litovskaya Str., Saint Petersburg 194100.

RSCI SPIN-code: 6086-0169



A. N. Galustyan
Saint Petersburg Pediatric Medical University
Russian Federation

Anna N. Galustyan – MD, PhD, Associate Professor, Chief of Chair of Pharmacology with the Course of Clinical Pharmacology and Pharmacoeconomics, Saint Petersburg  Pediatric Medical  University.

2 Litovskaya Str., Saint Petersburg 194100.

RSCI SPIN-code: 3303-7650



М. Yu. Krivdina
Saint Petersburg Pediatric Medical University
Russian Federation

Marina Yu. Krivdina – Neurologist, Psychoneurological Department, Saint Petersburg Pediatric Medical University.

2 Litovskaya Str., Saint Petersburg 194100.



V. V. Rusanovsky
Saint Petersburg Pediatric Medical University
Russian Federation

Vladimir  V. Rusanovsky  – Dr.  Med.  Sc., Professor,  Chair  of Pharmacology  with  the  Course  of Clinical  Pharmacology  and Pharmacoeconomics, Saint Petersburg  Pediatric Medical  University.

2 Litovskaya Str., Saint Petersburg 194100.

RSCI SPIN-code: 7010-4530



E. A. Efet
Saint Petersburg Pediatric Medical University
Russian Federation

Elena A. Efet – MD, PhD, Head of Psychoneurological Department, Saint Petersburg Pediatric Medical University.

2 Litovskaya Str., Saint Petersburg 194100.



A. Е. Krivoshein
Saint Petersburg Pediatric Medical University
Russian Federation

Aleksandr  E. Krivoshein – Student, Saint Petersburg  Pediatric Medical University.

2 Litovskaya Str., Saint Petersburg 194100.



N. A. Kuritsyna
Saint Petersburg Pediatric Medical University
Russian Federation

Natalia A. Kuritsyna – MD, PhD,  Associate  Professor,  Chair  of Pharmacology  with the Course  of Clinical  Pharmacology  and Pharmacoeconomics, Saint Petersburg  Pediatric Medical  University.

2 Litovskaya Str., Saint Petersburg 194100.

RSCI SPIN-code: 4361-7365



О. A. Gromova
Federal Research Center “Informatics and Management”, Russian Academy of Sciences
Russian Federation

Olga A. Gromova – Dr. Med. Sc., Professor, Research Supervisor, Federal Research Center “Informatics and Management”, RAS.

4 Vavilov Str., Moscow 119333.

Scopus  Author ID: 7003589812

WoS ResearcherID: J-4946-2017

RSCI SPIN-code: 6317-9833



References

1. Aikardi J., Bax M., Gillberg K. (Eds.) Diseases of the nervous system in children. 3rd ed. London: Mac Keith Press; 2009.

2. Rudenskaya G.E., Zakharova E.Y. Hereditary neurometabolic diseases of youth and adulthood. Moscow: GEOTAR-Media; 2018: 377 (in Russ.).

3. Fukuhara N., Tokiguchi S., Shirakawa K., Tsubaki T. Myoclonus epilepsy associated with ragged-red fibers (mitochondrial abnormalities): disease entity or a syndrome. J Neurol Sci. 1980; 47 (1): 117–33. http://doi.org/10.1016/0022-510x(80)90031-3.

4. Lorenzoni P.J., Scola R.H., Kay C.S., et al. When should MERRF (myoclonus epilepsy associated with with ragged red fibers) be the diagnosis? Arq Neuropsiquiatr. 2014; 72 (10): 803–11. http://doi.org/10.1590/0004-282x20140124.

5. Mancuso M., Orsucci D., Angelini C., et al. Phenotypic heterogeneity of the 8344A > G mtDNA “MERRF” mutation. Neurology. 2013; 80 (22): 2049–54. http://doi.org/10.1212/WNL.0b013e318294b44c.

6. Finsterer J., Kovacs G.G. Psoriasis, hyperlipidemia, bulbar involvement, and diarrhoea in MERRF-syndrome due to the m. 8344A> G tRNA (Lys) mutation. Iran J Neurol. 2017; 16 (1): 45–9.

7. Liu K., Zhao H., Ji K., et al. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation. Metab Brain Dis. 2014; 29 (1): 139–44. https://doi.org/10.1007/s11011-013-9464-5.

8. Darin N., Oldfors A., Moslemi A.R., et al. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001; 49 (3): 377–83. https://doi.org/10.1002/ana.75.

9. Schaefer A.M., McFarland R., Blakely E.L., et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol. 2008; 63 (1): 35–9. https://doi.org/10.1002/ana.21217.

10. Remes A.M., Majamaa-Voltti K., Kärppä M., et al. Prevalence of large-scale mitochondrial DNA deletions in an adult Finnish population. Neurology. 2005; 64 (6): 976–81. https://doi.org/10.1212/01.WNL.0000154518.31302.ED.

11. Novikov A.E. Evolution in clinical epileptology. M.: Flinta; 2015: 583 pp. (in Russ.).

12. Ito S., Shirai W., Asahina M., et al. Clinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation. AJNR Am J Neuroradiol. 2008; 29 (2): 392–5. https://doi.org/10.3174/ajnr.A0865.

13. Finsterer J. Mitochondrial ataxias. Can J Neurol Sci. 2009; 36 (5): 543–53. http://doi.org/10.1017/s0317167100008027.

14. Illarioshkin S.N. Algorithm of diagnosis of mitochondrial encephalomyopathies. Atmosphere. Nervous Diseases. 2007; 3: 23–7 (in Russ.).

15. Ublinskiy M.V., Manzhurtsev A.V., Men’shchikov P.E., et al. Multimodal studies of the human brain using functional magnetic resonance imaging and magnetic resonance spectroscopy. Annals of Clinical and Experimental Neurology. 2018; 12 (1): 54–60 (in Russ.).

16. Betts J., Lightowlers R.N., Turnbull D.M. Neuropathological aspects of mitochondrial DNA disease. Neurochem Res. 2004; 29 (3): 505–11. https://doi.org/10.1023/b:nere.0000014821.07269.8d.

17. Chuang C.S., Lo M.C., Lee K.W., Liu C.S. Magnetic resonance spectroscopy study in basal ganglia of patients with myoclonic epilepsy with ragged-red fibers. Neurol India. 2007; 55 (4): 385–7. https://doi.org/10.4103/0028-3886.37096.

18. Sinha S., Satishchandra P., Gayathri N., et al. Progressive mioclonic epilepsy: a clinical, electrophysiological and pathological study from South India. J Neurol Sci. 2007; 252 (1): 16–23. http://doi.org/10.1016/j.jns.2006.09.021.

19. DiMauro S., Hirano M., Kaufmann P., et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol. 2002; 89: 217–29.

20. Zeviani M., Amati P., Bresolin N., et al. Rapid detection of the A-to-G(8344) mutation of mtDNA in Italian families with myoclonus epilepsy and ragged-red fibers (MERRF). Am J Hum Genet. 1991; 48 (2): 203–11.

21. Marotta R., Chin J., Quigley A., et al. Diagnostic screening of mitochondrial DNA mutations in Australian adults 1990–2001. Intern Med J. 2004; 34 (1-2): 10–9. https://doi.org/10.1111/j.1444-0903.2004.t01-3-.x.

22. Finsterer J., Zarrouk-Mahjoub S. Management of epilepsy in MERRF syndrome. Seizure. 2017; 50: 166–70. http://doi.org/10.1016/j.seizure.2017.06.010.

23. Nikolaeva E.A., Yablonskaya M.I., Kharabadze M.N., et al. Efficiency of complex therapy for different forms of mitochondrial diseases in infants. Rossiyskiy Vestnik Perinatologii i Pediatrii / Russian Bulletin of Perinatology and Pediatrics. 2009; 54 (6): 26–30 (in Russ.).

24. Zavadenko N.N., Kholin A.A. Epilepsy in children with mitochondrial diseases: diagnostics and treatment features. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2012; 4 (2): 21–7 (in Russ.).

25. Lorenzoni P.J., Scola R.H., Kay C.S., et al. MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion. 2011; 11 (3): 528–32. http://doi.org/10.1016/j.mito.2011.01.003.

26. Finsterer J., Zarrouk Mahjoub S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol. 2012; 8 (1): 71–9. https://doi.org/10.1517/17425255.2012.644535.


Review

For citations:


Tadtaeva Z.G., Galustyan A.N., Krivdina М.Yu., Rusanovsky V.V., Efet E.A., Krivoshein A.Е., Kuritsyna N.A., Gromova О.A. Myoclonic epilepsy with ragged red fibers in childhood. Epilepsy and paroxysmal conditions. 2022;14(1):28-36. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2022.111

Views: 703


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)