Clinical case of distal arthrogryposis in combination with epilepsy due to an unbalanced translocation
https://doi.org/10.17749/2077-8333/epi.par.con.2022.112
Abstract
The clinical case of a patient with congenital contractures of the lower and upper limbs, face, seizures, facial dysmorphias, motor disorders and psychomotor development delay is presented. The proband with Freeman–Sheldon syndrome had no mutations in genes associated with distal arthrogryposis. Chromosomal microarray analysis revealed terminal duplication of the long arm of chromosome 9 and terminal microdeletions of the short arm of chromosome 20 – 46,XX.arr[hg38]9q33.3q34.3 (127016168_138124666) x3,20p13 (259113_1003183)x1 in the de novo status. This clinical observation demonstrates an opportunity of using innovative molecular cytogenetic technologies in the search for disease-related genetic causes in the absence of mutations detected by whole exome sequencing.
About the Authors
T. V. KozhanovaRussian Federation
Tatyana V. Kozhanova – MD, PhD, Associate Professor, Senior Researcher, Genetic Group, Scientific Department, Laboratory Geneticist
Moscow
RSCI SPIN-code: 9909-4273
S. S. Zhilina
Russian Federation
Svetlana S. Zhilina – MD, PhD, Associate Professor, Leading Researcher, Genetic Group, Scientific Department, Geneticist
Moscow
RSCI SPIN-code: 6153-7926.
T. I. Meshсheryakova
Russian Federation
Tatyana I. Meshсheryakova – MD, PhD, Leading Researcher, Genetic Group, Scientific Department, Geneticist
Moscow
RSCI SPIN-code: 9429-0318.
N. P. Prokopyeva
Russian Federation
Natalya P. Prokopyeva – MD, Head of Neuropsychiatric Department No. 2
Moscow
A. G. Prityko
Russian Federation
Andrey G. Prityko – Dr. Med. Sc., Professor, Academician of Russian Academy of Natural Sciences, Director
Moscow
RSCI SPIN-code: 5045-6357
N. N. Zavadenko
Russian Federation
Nikolay N. Zavadenko – Dr. Med. Sc., Professor, Head of Badalyan Chair of Neurology, Neurosurgery and Medical Genetics, Department of Pediatrics
Moscow
RSCI SPIN-code: 5944-7629
References
1. Zlotolow D.A. Arthrogryposis. In: Abzug J.M., Kozin S.H., Neiduski R. (Eds.) Pediatric hand therapy. Philadelphia: Elsevier; 2020: 133–146. https://doi.org/10.1016/B978-0-323-53091-0.00010-5.
2. Kimber E., Tajsharghi H., Kroksmark A.K., et al. Distal arthrogryposis: clinical and genetic findings. Acta Paediatr. 2012; 101 (8): 877–87. https://doi.org/10.1111/j.1651-2227.2012.02708.x.
3. Freeman E.A., Sheldon J.H. Cranio-carpo-tarsal dystrophy. Arch Dis Child. 1938; 13 (75): 277–83. https://doi.org/10.1136/adc.13.75.277.
4. Stevenson D.A., Carey J.C., Palumbos J., et al. Clinical characteristics and natural history of Freeman–Sheldon syndrome. Pediatrics. 2006; 117 (3): 754–62. https://doi.org/10.1542/peds.2005-1219.
5. Gurjar V., Parushetti A., Gurjar M. Freeman–Sheldon syndrome presenting with microstomia: a case report and literature review. J Maxillofac Oral Surg. 2013; 12 (4): 395–9. https://doi.org/10.1007/s12663-012-0392-4.
6. Perry G.H., Ben-Dor A., Tsalenko A., et al. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet. 2008; 82 (3): 685–95. https://doi.org/10.1016/j.ajhg.2007.12.010.
7. Wang D., Li X., Jia S., et al. Copy number variants associated with epilepsy from gene expression microarrays. J Clin Neurosci. 2015; 22 (12): 1907–10. https://doi.org/10.1016/j.jocn.2015.05.033.
8. Mefford H.C., Muhle H., Ostertag P., et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010; 6 (5): e1000962. https://doi.org/10.1371/journal.pgen.1000962.
9. Li W., Olivier M. Current analysis platforms and methods for detecting copy number variation. Physiol Genomics. 2013; 45 (1): 1–16. https://doi.org/10.1152/physiolgenomics.00082.2012.
10. Ben-David U., Mayshar Y., Benvenisty N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc. 2013; 8 (5): 989–97. https://doi.org/10.1038/nprot.2013.051.
11. Bollen S., Leddin M., Andrade-Navarro M.A., Mah N. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data. Bioinformatics. 2014; 30 (10):1484–5. https://doi.org/10.1093/bioinformatics/btu028.
12. James W., Elston D., Treat J., et al. Andrews’ diseases of the skin: clinical dermatology. 13th ed. Philadelphia: Elsevier; 2019: 992 pp.
13. OMIM 193700. Arthrogryposis, distal, type 2A; DA2A. Available at: https://omim.org/entry/193700 (accessed 30.03.2022).
14. Stevenson D.A., Carey J.C., Palumbos J., et al. Clinical characteristics and natural history of Freeman–Sheldon syndrome. Pediatrics. 2006; 117 (3): 754–62. https://doi.org/10.1542/peds.2005-1219.
15. Antley R.M., Uga N., Burzynski N.J., et al. Diagnostic criteria for the whistling face syndrome. Birth Defects Orig Artic Ser. 1975; 11 (5): 161–8.
16. Toydemir P.B., Toydemir R., Bökesoy I. Whistling face phenotype without limb abnormalities. Am J Med Genet. 1999; 86 (1): 86–7. https://doi.org/10.1002/(sici)1096-8628(19990903)86:1<86::aid-ajmg17>3.0.co;2-9.
17. Shaffer L.G., Lupski J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet. 2000; 34: 297–329. https://doi.org/10.1146/annurev.genet.34.1.297.
18. Batzir N.A., Shohat M., Maya I. Chromosomal microarray analysis (CMA) a clinical diagnostic tool in the prenatal and postnatal settings. Pediatr Endocrinol Rev. 2015; 13 (1): 448–54.
Review
For citations:
Kozhanova T.V., Zhilina S.S., Meshсheryakova T.I., Prokopyeva N.P., Prityko A.G., Zavadenko N.N. Clinical case of distal arthrogryposis in combination with epilepsy due to an unbalanced translocation. Epilepsy and paroxysmal conditions. 2022;14(2):214-220. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2022.112

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.