Preview

Эпилепсия и пароксизмальные состояния

Расширенный поиск

Выход из нейрохимического лабиринта: нейротрансмиттеры, нейропептиды и основанные на патофизиологии эпилепсии механизмы действия новых лекарственных средств

https://doi.org/10.17749/2077-8333/epi.par.con.2023.152

Аннотация

Мозг представляет собой чрезвычайно сложную трехмерную структуру, состоящую из взаимосвязанных нейронов и клеток нейроглии, которые определяют все проявления функций организма человека в норме и при патологии. Взаимодействие с окружающей средой осуществляется благодаря организованной и системной электрической активности нейронов, с помощью которой они передают сообщения в мозг и от него. Патологическая электрическая активность, приводящая к интенсивной вспышке возбуждения, приводит к развитию эпилепсии. Для эпилепсии характерны повторяющиеся неспровоцированные приступы в результате чрезмерного гиперсинхронного разряда нейронов в головном мозге. Около 1% населения во всем мире страдает эпилепсией, при этом почти у 75% больных она начинается в детстве. Почти у 1/3 пациентов заболевание резистентно к современным противоэпилептическим препаратам. В настоящее время отсутствует глубокое понимание патофизиологии данной болезни, которое могло бы быть полезным в дальнейших исследованиях лекарственных средств с новыми механизмами действия. В статье рассматривается роль различных нейротрансмиттеров и нейропептидов в патофизиологии эпилепсии. Задача обзора – познакомить ученых с накопленными представлениями об эпилепсии, которые могли бы помочь в дальнейшей разработке новых препаратов, нацеленных на преодоление терапевтической резистентности у пациентов с эпилепсией.

Об авторах

М. Дхалл
Университет медицинских наук им. Пандита Бхагвата Даяла Шармы
Индия

Маниш Дхалл – магистр фармацевтики, доктор философии, ассистент кафедры, Фармацевтический колледж

Дарьяо Нагар, Рохтак, Харьяна 124001



Р. Кадиан
Фармацевтический колледж Рама Гопала
Индия

Рену Кадиан – магистр фармацевтики, доктор философии, руководитель

 



П. Шарма
Фармацевтический колледж гуру Гобинда Сингха
Индия

Прерна Шарма – доцент

Ямунанагар, Харьяна 135001



А. Хоода
Женский университет Бхагат Фул Сингх
Индия

Анил Хоода – магистр фармацевтики, ассистент кафедры фармацевтического образования и научных исследований, Южный кампус, Бхайнсуал Калан

Ханпур Калан, Сонепат, Харьяна 131409



П. Кумар
Женский университет Бхагат Фул Сингх
Индия

Пушпандер Кумар – магистр фармацевтики, доктор философии, ассистент кафедры фармацевтического образования и научных исследований, Южный кампус, Бхайнсуал Калан

Ханпур Калан, Сонепат, Харьяна 131409



П. Мадгал
Университет PDM
Индия

Прайя Мадгал – магистр фармацевтики, ассистент кафедры, факультет фармацевтических наук

Бахадургарх, Харьяна 124507



К. Сингх
Институт технологий и наук Раджендры
Индия

Кулвант Сингх – магистр фармацевтики, ассистент кафедры

Сирса, Харьяна 125055



А. Арья
Женский университет Бхагат Фул Сингх
Индия

Ашвани Арья – магистр фармацевтики, доктор философии, ассистент кафедры фармацевтического образования и научных исследований, Южный кампус, Бхайнсуал Калан

Ханпур Калан, Сонепат, Харьяна 131409



Н. Рани
Университет Читкара
Индия

Нидхи Рани – магистр фармацевтики, доктор философии, доцент кафедры фармацевтической химии, Фармацевтический колледж Читкара

Раджпура, Пенджаб 140401



Список литературы

1. López-Gómez M.L., Espinola M., Ramirez-Bermudez J., et al. Clinical presentation of anxiety among patients with epilepsy. Neuropsychiatr Dis Treat. 2008; 4 (6): 1235–9. https://doi.org/10.2147/ndt.s3990.

2. Moshé S.L., Perucca E., Ryvlin P., Tomsan T. Epilepsy: new advances. Lancet. 2015; 385 (9971): 884–98. https://doi.org/10.1016/S01406736(14)60456-6.

3. Fisher R.S., Cross J.H., French J.A., et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 (4): 522–30. https://doi.org/10.1111/epi.13670.

4. Dhiman P. Barbiturates in treatment of epilepsy. JDDT. 2013; 1 (8): 15–22.

5. Badawy R.A., Harvey A.S., Macdonald R.A. Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy – Part 1. J Clin Neurosci. 2009; 16 (3): 355–65. https://doi.org/10.1016/j.jocn.2008.08.026.

6. Singh S., Singh T.G., Rehni A.K., et al. Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. 2021; 58: 213–26. https://doi.org/10.1016/j.mito.2021.03.009.

7. Werner F.M., Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy: a focus on antiepileptic drugs. Curr Med Chem. 2011; 18 (32): 4933–48. https://doi.org/10.2174/092986711797535191.

8. de Souza E.A., Salgado P.C. A psychosocial view of anxiety and depression in epilepsy. Epilepsy Behav. 2006; 8 (1): 232–8. https://doi.org/10.1016/j.yebeh.2005.10.011.

9. Hamid H., Ettinger A.B., Mula M. Anxiety symptoms in epilepsy: salient issues for future research. Epilepsy Behav. 2011; 22 (1): 63–8. https://doi.org/10.1016/j.yebeh.2011.04.064.

10. Hills M.D. The psychological and social impact of epilepsy. Neurology Asia. 2007; 12 (Suppl. 1): 10–2.

11. Mula M., Monaco F. Antiepileptic drugs and psychopathology of epilepsy: an update. Epileptic Disord. 2009; 11 (1): 1–9. https://doi.org/10.1684/epd.2009.0238.

12. Dupont S., Samson Y., Nguyen-Michel V.H., et al. Lateralizing value of semiology in medial temporal lobe epilepsy. Acta Neurol Scand. 2015; 132 (6): 401–9. https://doi.org/10.1111/ane.12409.

13. Barba C., Rheims S., Minotti L., et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain. 2016; 139 (Pt. 2): 444–51. https://doi.org/10.1093/brain/awv372.

14. Kaplan D.I., Isom L.L., Petrou S. Role of sodium channels in epilepsy. Cold Spring Harb Perspect Med. 2016; 6 (6): a022814. https://doi.org/10.1101/cshperspect.a022814.

15. Avanzini A., Franceschetti S., Mantegazza M. Epileptogenic channelopathies: experimental models of human pathologies. Epilepsia. 2007; 48 (Suppl. 2): 51–64. https://doi.org/10.1111/j.15281167.2007.01067.x.

16. Meldrum B.S., Rogawski M.A. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007; 4 (1): 18–61. https://doi.org/10.1016/j.nurt.2006.11.010.

17. White H.S., Smith M.D., Wilcox K.S. Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol. 2007; 81: 85–110. https://doi.org/10.1016/S0074-7742(06)81006-8.

18. Kaminska B., Figiel I., Pyrzynska B., et al. Treatment of hippocampal neurons with cyclosporin A results in calcium overload and apoptosis which are independent on NMDA receptor activation. Br J Pharmacol. 2001; 133 (7): 997–1004. https://doi.org/10.1038/sj.bjp.0704177.

19. Amédée T., Robert A., Coles J.A. Potassium homeostasis and glial energy metabolism. Glia. 1997; 21 (1): 46–55.

20. Wen Y., Fu P., Wu K., et al. Inhibition of calcineurin A by FK506 suppresses seizures and reduces the expression of GluN2B in membrane fraction. Neurochem Res. 2017; 42 (8): 2154–66. https://doi.org/10.1007/s11064-017-2221-0.

21. van ’t Klooster M.A., Leijten F.S.S., Huiskamp G., et al. High frequency oscillations in the intra-operative ECoG to guide epilepsy surgery (‘The HFO Trial’): study protocol for a randomized controlled trial. Trials. 2015; 16: 422. https://doi.org/10.1186/s13063-015-0932-6.

22. Blumcke I., Spreafico R., Haaker G., et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017; 377: 1648–56. https://doi.org/10.1056/NEJMoa1703784.

23. Bozzi Y., Dunleavy M., and Henshall D.C. Cell signaling underlying epileptic behavior. Front Behav Neurosci. 2011; 5: 45. https://doi.org/10.3389/fnbeh.2011.00045.

24. Jacob T.C., Moss S.J., Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008; 9 (5): 331–43. https://doi.org/10.1038/nrn2370.

25. Hughes J.R. Gamma, fast, and ultrafast waves in the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 2008; 13 (1): 25–31. https://doi.org/10.1016/j.yebeh.2008.01.011.

26. Chen J.W., Naylor D.E., Wasterlain C.G. Advances in the pathophysiology of status epilepticus. Acta Neurol Scand Suppl. 2007; 186: 7–15.

27. Tsai M.L., Shen B., Leung L.S. Seizure induced by GABAB-receptor blockade in early-life induced long-term GABA(B) receptor hypofunction and kindling facilitation. Epilepsy Res. 2008; 79 (2–3): 187–200. https://doi.org/10.1016/j.eplepsyres.2008.02.001.

28. Bach Justesen A., Eskelund Johansen A.B., Martinussen N.I., et al. Added clinical value of the inferior temporal EEG electrode chain. Clin Neurophysiol. 2018; 129 (1): 291–5. https://doi.org/10.1016/j.clinph.2017.09.113.

29. Alvim M.K.M., Morita M.E., Yasuda C.L., et al. Is inpatient ictal videoelectroencephalographic monitoring mandatory in mesial temporal lobe epilepsy with unilateral hippocampal sclerosis? A prospective study. Epilepsia. 2018; 59 (2): 410–9. https://doi.org/10.1111/epi.13977.

30. Vakharia V.N., Sparks R., O'Keeffe A.G., et al. Accuracy of intracranial electrode placement for stereoencephalography: a systematic review and meta-analysis. Epilepsia. 2017; 58 (6): 921–32. https://doi.org/10.1111/epi.13713.

31. Kannan L., Vogrin S., Bailey C., et al. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain. 2016; 139 (Pt. 10): 2653–67. https://doi.org/10.1093/brain/aww192.

32. Chen C.M., Lin J.K., Liu S.H., Lin-Shiau S.Y. Novel regimen through combination of memantine and tea polyphenol for neuroprotection against brain excitoxicity. J Neurosci Res. 2008; 86 (12): 2696–704. https://doi.org/10.1002/jnr.21706.

33. Vincent P., Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience. 2008; 158 (1): 309–23. https://doi.org/10.1016/j.neuroscience.2008.02.066.

34. Barker-Haliski M.B., White H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015; 5 (8): a022863. https://doi.org/10.1101/cshperspect.a022863.

35. Durand D., Carniglia L., Caruso C., Lasaga M. mGlu3 receptor and astrocytes: partners in neuroprotection. Neuropharmacology. 2013; 66: 1–11. https://doi.org/10.1016/j.neuropharm.2012.04.009.

36. Tang F.R., Chia S.C., Chen P.M., et al. Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res. 2004; 59 (2–3): 167–80. https://doi.org/10.1016/j.eplepsyres.2004.04.002.

37. Borowicz K.K., Zarczuk R., Latalski M., Borowicz K.M. Reboxetine and its influence on the action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep. 2014; 66 (3): 430–5. https://doi.org/10.1016/j.pharep.2013.11.009.

38. Veronesi M.C., Kubek D.J., Kubek M.J. Intranasal delivery of a thyrotropin-releasing hormone analog attenuates seizures in the amygdala-kindled rat. Epilepsia. 2007; 48 (12): 2280–6. https://doi.org/10.1111/j.1528-1167.2007.01218.x.

39. Hesdorffer D.C., Ishihara L., Mynepalli L., et al. Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. Ann Neurol. 2012; 72 (2): 184–91. https://doi.org/10.1002/ana.23601.

40. Epps S.A., Weinshenker D. Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol. 2013; 85 (2): 135–46. https://doi.org/10.1016/j.bcp.2012.08.016.

41. Hamid H., Kanner A.M. Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs? Epilepsy Behav. 2013; 26 (3): 261–5. https://doi.org/10.1016/j.yebeh.2012.10.009.

42. Bagdy G., Kecskemeti V., Riba P., Jakus R. Serotonin and epilepsy. J Neurochem. 2007; 100 (4): 857–73. https://doi.org/10.1111/j.14714159.2006.04277.x.

43. Jaseja H. Pedunculopontine nucleus stimulation: potent therapeutic role in intractable epilepsy. Epilepsy Behav. 2013; 27 (1): 280. https://doi.org/10.1016/j.yebeh.2013.01.021.

44. Acon-Chen C., Koenig A.J., Smith G.R., et al. Evaluation of acetylcholine, seizure activity and neuropathology following high-dose nerve agent exposure and delayed neuroprotective treatment drugs in freely moving rats. Toxicol Mech Methods. 2016; 26 (5): 378–88. https://doi.org/10.1080/15376516.2016.1197992.

45. Nemtsas P., Birot G., Pittau F., et. al. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia. 2017; 58 (6): 1027–36. https://doi.org/10.1111/epi.13749.

46. Hoda J.C., Gu W., Friedli M., et al. Human nocturnal frontal lobe epilepsy: pharmacogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol Pharmacol. 2008; 74 (2): 379–91. https://doi.org/10.1124/mol.107.044545.

47. Kovac S., Walker M.C. Neuropeptides in epilepsy. Neuropeptides. 2013; 47 (6): 467–75. https://doi.org/10.1016/j.npep.2013.10.015.

48. van den Pol A.N. Neuropeptide transmission in brain circuits. Neuron. 2012; 76 (1): 98–115. https://doi.org/10.1016/j.neuron.2012.09.014.

49. Mytinger J.R., Joshi S. The current evaluation and treatment of infantile spasms among members of the Child Neurology Society. J Child Neurol. 2012; 27 (10): 1289–94. https://doi.org/10.1177/0883073812455692.

50. Baram T.Z. Models for infantile spasms: an arduous journey to the Holy Grail. Ann Neurol. 2007; 61 (2): 89–91. https://doi.org/10.1002/ana.21075.

51. Ramanujam B., Bharti K., Viswanathan V., et al. Can ictal-MEG obviate the need for phase II monitoring in people with drug-refractory epilepsy? A prospective observational study. Seizure. 2017; 45: 17–23. https://doi.org/10.1016/j.seizure.2016.10.013.

52. Jaseja H., Jaseja B., Badaya S., Tonpay P. Superior therapeutic efficacy of adrenocorticotrophic hormone (ACTH) in infantile spasms: emerging evidence. Epilepsy Behav. 2012; 25 (2): 250. https://doi.org/10.1016/j.yebeh.2012.08.003.

53. Koneru A., Satyanarayana S., Rizwan S. Endogenous opioids: their physiological role and receptors. Glob J Pharmacol. 2009; 3 (3): 149–53.

54. Park E.H., Madsen J.R. Granger causality analysis of interictal iEEG predicts seizure focus and ultimate resection. Neurosurgery. 2018; 82 (1): 99–109. https://doi.org/10.1093/neuros/nyx195.

55. Tomlinson S.B., Porter B.E., Marsh E.D. Interictal network synchrony and local heterogeneity predict epilepsy surgery outcome among pediatric patients. Epilepsia. 2017; 58 (3): 402–11. https://doi.org/10.1111/epi.13657.

56. Zweiphenning W.J., van 't Klooster M.A., van Diessen E., et al. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy. Neuroimage Clin. 2016; 12: 928–39. https://doi.org/10.1016/j.nicl.2016.09.014.

57. Tallent M.K., Qiu C. Somatostatin: anendogenous antiepileptic. Mol Cell Endocrinol. 2008; 286 (1–2): 96–103. https://doi.org/10.1016/j.mce.2007.12.004.

58. De Bundel D., Aourz N., Kiagiadaki F., et al. Hippocampal sst(1) receptors are autoreceptors and do not affect seizures in rats. Neuroreport. 2010; 21 (4): 254–8. https://doi.org/10.1097/WNR.0b013e3283353a64.

59. Choi Y.S., Lin S.L., Lee B., et al. Status epilepticus-induced somatostatinergic hilar interneuron degeneration is regulated by striatal enriched protein tyrosine phosphatase. J Neurosci. 2007; 27 (11): 2999–3009. https://doi.org/10.1523/JNEUROSCI.4913-06.2007.

60. Burns S.P., Santaniello S., Yaffe R.B., et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci U S A. 2014; 111 (49): E5321–30. https://doi.org/10.1073/pnas.1401752111.

61. Hebbink J., Meijer H., Huiskamp G., et al. Phenomenological network models: lessons for epilepsy surgery. Epilepsia. 2017; 58 (10): e147–51. https://doi.org/10.1111/epi.13861.

62. Centeno M., Tierney T.M., Perani S., et al. Combined electroencephalography–functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy. Ann Neurol. 2017; 82 (2): 278–87. https://doi.org/10.1002/ana.25003.

63. Roehri N., Pizzo F., Lagarde S., et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol. 2018; 83 (1): 84–97. https://doi.org/10.1002/ana.25124.

64. Reilly M.T., Milner L.C., Shirley R.L., et al. 5-HT2C and GABAB receptors influence handling-induced convulsion severitiy in chromosome 4 congenic and DBA/2J background strain mice. Brain Res. 2008; 1198: 124–31. https://doi.org/10.1016/j.brainres.2008.01.024.

65. Khomane K.S., Meena C.L., Jain R., Bansal A.K. Novel thyrotropinreleasing hormone analogs: a patent review. Expert Opin Ther Pat. 2011; 21 (11): 1673–91. https://doi.org/10.1517/13543776.2011.623127.

66. Weiczner R., Krisztin-Péva B., Mihály A. Blockade of AMPA-receptors attenuates 4-aminopyridine seizures, decreases the activation of inhibitory neurons but is ineffective against seizure-related astrocytic swelling. Epilepsy Res. 2008; 78 (1): 22–32. https://doi.org/10.1016/j.eplepsyres.2007.10.004.

67. Werner F.M., Covenas R. Genetically and exogeneously induced neurotransmitter and neuropeptide alterations in generalized epilepsies in a multiple neurotransmitter system. Epilepsia. 2010; 51 (Suppl. 2): 32. https://doi.org/10.1111/j.1528-1167.2010.02595.x.

68. Mitsukawa K., Lu X., Bartfai T. Galanin receptors and drug targets. Exp Suppl. 2010; 102: 7–23. https://doi.org/10.1007/978-3-03460228-0_2.

69. Okanishi T., Akiyama T., Mayo E., et al. Magnetoencephalography spike sources interrelate the extensive epileptogenic zone of tuberous sclerosis complex. Epilepsy Res. 2016; 127: 302–10. https://doi.org/10.1016/j.eplepsyres.2016.09.007.

70. R.R. Keni, Jose M., Reshma A.S., et al. Anti-epileptic drug and folic acid usage during pregnancy, seizure and malformation outcomes: changes over two decades in the Kerala Registry of Epilepsy and Pregnancy. Epilepsy Res. 2020; 159: 106250. https://doi.org/10.1016/j.eplepsyres.2019.106250.

71. Skarpaas T.L., Jarosiewicz B., Morrell M.J. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 2019; 153: 68–70. https://doi.org/10.1016/j.eplepsyres.2019.02.003.

72. Stacey W., Kramer W., Gunnarsdottir K., et al. Emerging roles of network analysis for epilepsy. Epilepsy Res. 2020; 159: 106265. https://doi.org/10.1016/j.eplepsyres.2019.106255.

73. Laux L.C., Bebin E.M., Checketts D., et al. Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox–Gastaut syndrome or Dravet syndrome: expanded access program results. Epilepsy Res. 2019; 154: 13–20. https://doi.org/10.1016/j.eplepsyres.2019.03.015.

74. Lyttle M.D., Rainford N.E.A., Gamble C., et al. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet. 2019; 393 (10186): 2125–34. https://doi.org/10.1016/S01406736(19)30724-X.

75. Dixit A.B., Banerjee J., Chandra P.S., Tripathi M. Recent advances in epilepsy research in India. Neurol India. 2017; 65 (Suppl.): S83–92. https://doi.org/10.4103/neuroindia.NI_1070_16.

76. Harris J.A., Murphy J.A. Retigabine (ezogabine) as add-on therapy for partial-onset seizures: an update for clinicians. Ther Adv Chronic Dis. 2011; 2 (6): 371–76. https://doi.org/10.1177/2040622311421542.

77. Revathi S., Dhanaraju M.D. Optimization and characterization ezogabine-loaded nanosuspension for enhancement of bioavailability by “bottom-up” technology using 32 factorial design. JDDT. 2019; 9 (3): 227–37. https://doi.org/10.22270/jddt.v9i3.2860.

78. Ebrahimi H.A., Ebrahimi F. The effect of lamotrigine on epilepsy. Iran J Neurol. 2012; 11 (4): 162–3.

79. Raj R.A., Saju J. Formulation and evaluation of lamatrigine nanoparticle incorporated in situ gel for epilepsy. Int J Pharmacy Pharm Res. 2018; 13 (4): 1–17.

80. Tolou-Ghamari Z., Zare M., Habibabadi J.M., Najafi M.R. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J Res Med Sci. 2013; 18 (Suppl. 1): S81–5.

81. Remeth J.D., Kailas K.M., Vishwajeet G., et al. Formulation and evaluation of carbamazepine liquisolid compacts using novel carriers. Indian J Pharm Edu. 2017; 51 (2): S69–78. https://doi.org/10.5530/ijper.51.2s.52.

82. Brigo F., Igwe S.C., Bragazzi N.L. Stiripentol add-on therapy for drugresistant focal epilepsy. Cochrane Database Syst Rev. 2022; 9 (9): CD009887. https://doi.org/10.1002/14651858.

83. Samar A.A. Development of promising fast dissolving tablet of stiripentol: a novel antiepileptic drug. J Pharm Res. 2014; 8 (6): 823–34.

84. Abou-Khalil B. Levetiracetam in the treatment of epilepsy. Neuropsychiatr Dis Treat. 2008; 4 (3): 507–23. https://doi.org/10.2147/ndt.s2937.

85. Paliwal H., Goyal S., Rathore K.S., et al. Formulation and evaluation of levetiracetam extend release tablet. Int J Pharm Sci Rev Res. 2016; 41 (1): 260–6.

86. Iivanainen M., Savolainen H. Side effects of phenobarbital and phenytoin during long-term treatment of epilepsy. Acta Neurol Scand Suppl. 1983; 97: 49–67. https://doi.org/10.1111/j.1600-0404.1983.tb01535.x.

87. Madhavi N., Sudhakar B., Ravikanth P.V., et al. Formulation and evaluation of phenyotin sodium sustained release matrix tablet. J Bioequiv Bioavavilab. 2012; 4: 128–33. https://doi.org/10.4172/jbb.1000125.

88. Ochoa J.G., Kilgo W.A. The role of benzodiazepines in the treatment of epilepsy. Curr Treat Options Neurol. 2016; 18 (4): 18. https://doi.org/10.1007/s11940-016-0401-x.

89. Abed K.K., Hussein A.A., Ghareeb M.M., et al. Formulation and optimization of orodispersible tablet of diazepam. AAPS Pharm Sci Tech. 2010; 11 (1): 356–61. https://doi.org/10.1208/s12249-0109387-y.


Рецензия

Для цитирования:


Дхалл М., Кадиан Р., Шарма П., Хоода А., Кумар П., Мадгал П., Сингх К., Арья А., Рани Н. Выход из нейрохимического лабиринта: нейротрансмиттеры, нейропептиды и основанные на патофизиологии эпилепсии механизмы действия новых лекарственных средств. Эпилепсия и пароксизмальные состояния. 2023;15(3):282–293. https://doi.org/10.17749/2077-8333/epi.par.con.2023.152

For citation:


Dhall M., Kadian R., Sharma P., Hooda A., Kumar P., Mudgal P., Singh K., Arya A., Rani N. Unravelling the neurochemical maze: neurotransmitters, neuropeptides and novel drug modes of action based on epilepsy pathophysiology. Epilepsy and paroxysmal conditions. 2023;15(3):282–293. https://doi.org/10.17749/2077-8333/epi.par.con.2023.152

Просмотров: 1982


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)