Preview

Epilepsy and paroxysmal conditions

Advanced search

Impact of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms on antiepileptic drug safety and efficacy

https://doi.org/10.17749/2077-8333/epi.par.con.2025.240

Abstract

A review of literature data is presented on polymorphic variants of genes responsible for antiepileptic drugs (AEDs) pharmacokinetics: highly polymorphic cytochrome P450 isoenzyme genes CYP2C9 and CYP2C19 as well as the gene ABCB1 encoding transporter protein P-glycoprotein. Genetic variants in CYP2C9 and CYP2C19 reduce the rate of metabolism, leading to AED ineffectiveness and adverse effects. ABCB1 gene polymorphisms affect the expression of P-glycoprotein in the intestine and the blood-brain barrier, preventing drug penetration into the brain and leading to drug resistance. AEDs pharmacogenetic studies are of high medical priority, as they contribute to creating scientific foundation for personalized epilepsy treatment, development of drug dosing recommendations, increasing efficacy and safety of commonly administered AEDs. Further studies in different patient groups are needed to improve individualized epilepsy treatment in clinical practice.

About the Authors

N. A. Galankin
Saint Petersburg Pediatric Medical University
Russian Federation

Nikita A. Galankin 

WoS ResearcherID: KDP-1487-2024

2 Litovskaya Str., Saint Petersburg 194100 



Z. G. Tadtaeva
Saint Petersburg Pediatric Medical University
Russian Federation

Zara G. Tadtaeva, Dr. Sci. Med., Prof.  

2 Litovskaya Str., Saint Petersburg 194100 



I. S. Sardaryan
Saint Petersburg Pediatric Medical University
Russian Federation

Ivan S. Sardaryan, PhD, Assoc. Prof.  

Scopus Author ID: 57200672112 

2 Litovskaya Str., Saint Petersburg 194100 



A. N. Galustyan
Saint Petersburg Pediatric Medical University
Russian Federation

 Anna N. Galustyan, PhD, Assoc. Prof. 

2 Litovskaya Str., Saint Petersburg 194100 



O. A. Gromova
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Olga A. Gromova, Dr. Sci. Med., Prof.  

WoS ResearcherID: J-4946-2017. Scopus Author ID: 7003589812 

44 corp. 2 Vavilov Str., Moscow 119333



References

1. Karlov V.А. Epilepsy in children and adult women and men. A guide for doctors. 2nd ed. Мoscow: Binom; 2019: 896 pp. (in Russ.).

2. Carpay J.A., Aldenkamp A.P., van Donselaar C.A. Complaints associated with the use of antiepileptic drugs: results from a community-based study. Seizure. 2005; 14 (3): 198–206. https://doi.org/10.1016/j.seizure.2005.01.008.

3. Sychev D.A., Shuev G.N., Torbenkov E.S., Adriyanova M.A. Personalized medicine: clinical pharmacologist’s oppinion. Consilium Medicum. 2017; 19 (1): 61–8 (in Russ).

4. Martínez-Juárez I.E., Barrios-González D.A., Prado A.J., et al. Genes involved in pharmacoresistant epilepsy. In: Rocha L.L., Lazarowski A., Cavalheiro E.A. (Eds) Pharmacoresistance in epilepsy: from genes and molecules to promising therapies. Springer; 2023: 371–89. https://doi.org/10.1007/978-3-031-36526-3_17.

5. Enrique A.V., Di Ianni M.E., Goicoechea S., et al. New anticonvulsant candidates prevent P-glycoprotein (P-gp) overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav. 2021; 121 (Pt B): 106451. https://doi.org/10.1016/j.yebeh.2019.106451.

6. Wolking S., Schaeffeler E., Lerche H., et al. Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet. 2015; 54 (7): 709–35. https://doi.org/10.1007/s40262-015-0267-1.

7. Bruxel E.M., do Canto A.M., Bruno D.C.F., et al. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open. 2022; 7 (Suppl. 1): S94–120. https://doi.org/10.1002/epi4.12536.

8. Zhang C., Kwan P., Zuo Z., Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012; 64 (10): 930–42. https://doi.org/10.1016/j.addr.2011.12.003.

9. Leandro K., Bicker J., Alves G., et al. ABC transporters in drugresistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res. 2019; 144: 357–76. https://doi.org/10.1016/j.phrs.2019.04.031.

10. Saruwatari J., Ishitsu T., Nakagawa K. Update on the genetic polymorphisms of drug-metabolizing enzymes in antiepileptic drug therapy. Pharmaceuticals. 2010; 3 (8): 2709–32. https://doi.org/10.3390/ph3082709.

11. Lopez-Garcia M.A., Feria-Romero I.A., Fernando-Serrano H., et аl. Genetic polymorphisms associated with antiepileptic metabolism. Front Biosci. 2014; 6 (2): 377–86. https://doi.org/10.2741/E713.

12. Baltes S., Fedrowitz M., Tortós C.L., et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther. 2007; 320 (1): 331–43. https://doi.org/10.1124/jpet.106.102491.

13. Grewal G.K., Kukal S., Kanojia N., et al. In vitro assessment of the effect of antiepileptic drugs on expression and function of ABC transporters and their interactions with ABCC2. Molecules. 2017; 22 (10): 1484. https://doi.org/10.3390/molecules22101484.

14. Marvanova M. Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Ment Health Clin. 2016; 6 (1): 8–20. https://doi.org/10.9740/mhc.2015.01.008.

15. Carona A., Bicker J., Silva R., et al. Pharmacology of lacosamide: From its molecular mechanisms and pharmacokinetics to future therapeutic applications. Life Sci. 2021; 275: 119342. https://doi.org/0.1016/j.lfs.2021.119342.

16. Chanteux H., Kervyn S., Gerin B., et al. In vitro pharmacokinetic profile of brivaracetam (BRV) reveals low risk of drug-drug interaction (DDI) and unrestricted brain permeability (P4.276). Neurology. 2015; 84 (14 Suppl.): P4.276. https://doi.org/10.1212/WNL.84.14_supplement.P4.276.

17. Nakanishi H., Yonezawa A., Matsubara K., Yano I. Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur J Pharmacol. 2013; 710 (1-3): 20–8. https://doi.org/10.1016/j.ejphar.2013.03.049.

18. Isvoran A., Louet M., Vladoiu D.L., et al. Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today. 2017; 22 (2): 366–76. https://doi.org/10.1016/j.drudis.2016.09.015.

19. Daly A.K., Rettie A.E., Fowler D.M., Miners J.O. Pharmacogenomics of CYP2C9: functional and clinical considerations. J Pers Med. 2017; 8 (1): 1. https://doi.org/10.3390/jpm8010001.

20. Liu J., Lu Y.F., Corton J.C., Klaassen C.D. Expression of cytochrome P450 isozyme transcripts and activities in human livers. Xenobiotica. 2021; 51 (3): 279–86. https://doi.org/10.1080/00498254.2020.1867929.

21. PharmGKB. Gene-specific information tables for CYP2C9. Available at: https://www.pharmgkb.org/page/cyp2c9RefMaterials (accessed 26.01.2025).

22. Mirzaev K.B., Fedorinov D.S., Ivashchenko D.V., Sychev D.A. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics. 2019; 20 (11): 847–65. https://doi.org/10.2217/pgs-2019-0013.

23. Zhang Q., Qi Y., Wang S., et al. Identification and in vitro functional assessment of 10 CYP2C9 variants found in Chinese Han subjects. Front Endocrinol. 2023; 14: 1139805. https://doi.org/10.3389/fendo.2023.1139805.

24. Zhou Y., Nevosadová L., Eliasson E., Lauschke V.M. Global distribution of functionally important CYP2C9 alleles and their inferred metabolic consequences. Hum Genomics. 2023; 17 (1): 15. https://doi.org/10.1186/s40246-023-00461-z.

25. Karnes J.H., Rettie A.E., Somogyi A.A., et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther. 2021; 109 (2): 302–9. https://doi.org/10.1002/cpt.2008.

26. Rahman M., Awosika A.O., Nguyen H. Valproic acid. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK559112/ (accessed 26.01.2025).

27. Shnayder N.A., Grechkina V.V., Khasanova A.K., et al. Therapeutic and toxic effects of valproic acid metabolites. Metabolites. 2023; 13 (1): 134. https://doi.org/10.3390/metabo13010134.

28. Wang C., Wang P., Yang L.P., et al. Association of CYP2C9, CYP2A6, ACSM2A, and CPT1A gene polymorphisms with adverse effects of valproic acid in Chinese patients with epilepsy. Epilepsy Res. 2017; 132: 64–9. https://doi.org/10.1016/j.eplepsyres.2017.02.015

29. Zheng X.X., You Y.X., Zhao L.L., et al. Effects of UGT1A, CYP2C9/19 and ABAT polymorphisms on plasma concentration of valproic acid in Chinese epilepsy patients. Pharmacogenomics. 2023; 24 (3): 153–62. https://doi.org/10.2217/pgs-2022-0156.

30. Tan L., Yu J.T., Sun Y.P., et al. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurol Neurosurg. 2010; 112 (4): 320–3. https://doi.org/10.1016/j.clineuro.2010.01.002.

31. Schnayder N.A., Dmitrenko D.V., Govorina Y.B., et al. Effect of polymorphisms in the CYP2C9 gene on valproic acid levels in the blood of women’s in a reproductive age with epilepsy. Pharmacogenetics and Pharmacogenomics. 2015; 2: 24–8 (in Russ.).

32. Yoon H.Y., Ahn M.H., Yee J., et al. Influence of CYP2C9 and CYP2A6 on plasma concentrations of valproic acid: a meta-analysis. Eur J Clin Pharmacol. 2020; 76 (8): 1053–8. https://doi.org/10.1007/s00228-020-02872-6.

33. Bochanova E.N., Gusev S.D., Dmitrenko D.V., et al. A protocol for personalized valproic acid therapy for epilepsy. Doctor.Ru. 2019; 6: 6–11 (in Russ.). https://doi.org/10.31550/1727-2378-2019-161-6-6-11.

34. Strassburg C.P., Strassburg A., Kneip S., et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002; 50 (2): 259–65. https://doi.org/10.1136/gut.50.2.259.

35. McCarver D.G., Hines R.N. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002; 300 (2): 361–6. https://doi.org/10.1124/jpet.300.2.361.

36. Tóth K., Bűdi T., Kiss Á., et al. Phenoconversion ofCYP2C9 in epilepsy limits the predictive value of CYP2C9 genotype in optimizing valproate therapy. Per Med. 2015; 12 (3): 199–207. https://doi.org/10.2217/pme.14.82.

37. Monostory K., Nagy A., Tóth K., et al. Relevance of CYP2C9 function in valproate therapy. Curr Neuropharmacol. 2019; 17 (1): 99–106. https://doi.org/10.2174/1570159X15666171109143654.

38. Keppel Hesselink J.M. Phenytoin: a step by step insight into its multiple mechanisms of action – 80 years of mechanistic studies in neuropharmacology. J Neurol. 2017; 264 (9): 2043–7. https://doi.org/10.1007/s00415-017-8465-4.

39. Thorn C.F., Whirl-Carrillo M., Leeder J.S., Klein T.E., Altman RB. PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012; 22 (6): 466–70. https://doi.org/10.1097/FPC.0b013e32834aeedb.

40. Iorga A., Horowitz B.Z. Phenytoin toxicity. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK482444/ (accessed 26.01.2025).

41. Rosemary J., Surendiran A., Rajan S., et al. Influence of the CYP2C9 and CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from south India. Indian J Med Res. 2006; 123 (5): 665–70.

42. Silvado C.E., Terra V.C., Twardowschy C.A. CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. Pharmgenomics Pers Med. 2018; 11: 51–8. https://doi.org/10.2147/PGPM.S108113.

43. John S., Balakrishnan K., Sukasem C., et al. Association of HLA-B*51:01, HLA-B*55:01, CYP2C9*3, and phenytoin-induced cutaneous adverse drug reactions in the South Indian Tamil population. J Pers Med. 2021; 11 (8): 737. https://doi.org/10.3390/jpm11080737.

44. Suvichapanich S., Jittikoon J., Wichukchinda N., et al. Association analysis of CYP2C9*3 and phenytoin-induced severe cutaneous adverse reactions (SCARs) in Thai epilepsy children. J Hum Genet. 2015; 60 (8): 413–7. https://doi.org/10.1038/jhg.2015.47.

45. Chang W.C., Hung S.I., Carleton B.C., Chung W.H. An update on CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol. 2020; 16 (8): 723– 34. https://doi.org/10.1080/17425255.2020.1780209.

46. U.S. Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. Available at: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkersdrug-labeling (accessed 26.01.2025).

47. Tanno L., Kerr D., Santos B., et al. Polymorfism Of CYP2C9 And 3A5 and carbamazepine hypersensitivity reactions in Brazilian subjects. Clin Transl Allergy. 2014; 4 (Suppl. 3): P118. https://doi.org/10.1186/2045-7022-4-S3-P118.

48. Li Y., Guo H.L., Wang J., et al. CYP2C19 genotype and sodium channel blockers in lacosamide-treated children with epilepsy: two major determinants of trough lacosamide concentration or clinical response. Ther Adv Neurol Disord. 2024; 17: 17562864241273087. https://doi.org/10.1177/17562864241273087.

49. Zhao T., Li H.J., Zhang H.L., et al. Effects of CYP2C19 and CYP2C9 polymorphisms on the efficacy and plasma concentration of lacosamide in pediatric patients with epilepsy in China. Eur J Pediatr. 2024; 184 (1): 73. https://doi.org/10.1007/s00431-024-05897-6.

50. Goto S., Seo T., Murata T., et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit. 2007; 29 (1): 118–21. https://doi.org/10.1097/FTD.0b013e318030def0.

51. PharmGKB. Gene-specific information tables for CYP2C19. Available at: https://www.pharmgkb.org/page/cyp2c19RefMaterials (accessed 26.01.2025).

52. Dehbozorgi M., Kamalidehghan B., Hosseini I., et al. Prevalence of the CYP2C19*2 (681 G>A), *3 (636 G>A) and *17 (-806 C>T) alleles among an Iranian population of different ethnicities. Mol Med Report. 2018; 17 (3): 4195–202. https://doi.org/10.3892/mmr.2018.8377.

53. Alvarado A.T., Muñoz A.M., Varela N., et al. Pharmacogenetic variants of CYP2C9 and CYP2C19 associated with adverse reactions induced by antiepileptic drugs used in Peru. PHAR. 2023; 70 (3): 603–18. https://doi.org/10.3897/pharmacia.70.e109011.

54. Song C., Li X., Mao P., et al. Impact of CYP2C19 and CYP2C9 gene polymorphisms on sodium valproate plasma concentration in patients with epilepsy. Eur J Hosp Pharm Sci Pract. 2022; 29 (4): 198–201. https://doi.org/10.1136/ejhpharm-2020-002367.

55. Milosavljevic F., Manojlovic M., Matkovic L., et al. Pharmacogenetic variants and plasma concentrations of antiseizure drugs: a systematic review and meta-analysis. JAMA Netw Open. 2024; 7 (8): e2425593. https://doi.org/10.1001/jamanetworkopen.2024.25593.

56. Guo J., Huo Y., Li F., et al. Impact of gender, albumin, and CYP2C19 polymorphisms on valproic acid in Chinese patients: a population pharmacokinetic model. J Int Med Res. 2020; 48 (8): 300060520952281. https://doi.org/10.1177/0300060520952281.

57. Smith R.L., Haslemo T., Refsum H., Molden E. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid – a large-scale study based on naturalistic therapeutic drug monitoring data. Eur J Clin Pharmacol. 2016; 72 (9): 1099–4. https://doi.org/10.1007/s00228-016-2087-0.

58. Mani B., Nair P.P., Sekhar A., et al. CYP2C19 & UGT1A6 genetic polymorphisms and the impact on valproic acid-induced weight gain in people with epilepsy: prospective genetic association study. Epilepsy Res. 2021; 177: 106786. https://doi.org/10.1016/j.eplepsyres.2021.106786.

59. Mei S., Feng W., Zhu L., et al. Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol. 2018; 74 (8): 1029–36. https://doi.org/10.1007/s00228-018-2440-6.

60. Kanjanasilp J., Sawangjit R., Phanthaisong S., Borihanthanawuth W. A meta-analysis of effects of CYP2C9 and CYP2C19 polymorphisms on phenytoin pharmacokinetic parameters. Pharmacogenomics. 2021; 22 (10): 629–40. https://doi.org/10.2217/pgs-2020-0151.

61. Fohner A.E., Rettie A.E., Thai K.K., et al. Associations of CYP2C9 and CYP2C19 pharmacogenetic variation with phenytoin-induced cutaneous adverse drug reactions. Clin Transl Sci. 2020; 13 (5): 1004–9. https://doi.org/10.1111/cts.12787.

62. Klitgaard H., Matagne A., Nicolas J.M., et al. Brivaracetam: rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia. 2016; 57 (4): 538–48. https://doi.org/10.1111/epi.13340.

63. Tadtaeva Z.G., Galustyan A.N., Gromova O.A., Sardaryan I.S. Third generation antiepileptic drugs: mechanism of action, pharmacokinetics, interaction and use in childhood. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2023; 15 (2): 160–70 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2023.149.

64. Stockis A., Watanabe S., Rouits E., et al. Brivaracetam single and multiple rising oral dose study in healthy Japanese participants: influence of CYP2C19 genotype. Drug Metab Pharmacokinet. 2014; 29 (5): 394–9. https://doi.org/10.2133/dmpk.dmpk-14-rg-010.

65. National library of medicine. DailyMed. BRIVIACT – brivaracetam tablet, film coated. BRIVIACT – brivaracetam solution. BRIVIACT – brivaracetam injection, suspension. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=3cf2f439-0e97-443e-8e33-25ecef616f6c (accessed 26.01.2025).

66. Gauthier A.C., Mattson R.H. Clobazam: a safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci Ther. 2015; 21 (7): 543–8. https://doi.org/10.1111/cns.12399.

67. Giraud C., Tran A., Rey E., et al. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos. 2004; 32 (11): 1279–86. https://doi.org/10.1124/dmd.32.11.

68. Saruwatari J., Ogusu N., Shimomasuda M., et al. Effects of CYP2C19 and P450 oxidoreductase polymorphisms on the population pharmacokinetics of clobazam and N-desmethylclobazam in Japanese patients with epilepsy. Ther Drug Monit. 2014; 36 (3): 302–9. https://doi.org/10.1097/FTD.0000000000000015.

69. Yamamoto Y., Takahashi Y., Imai K., et al. Influence of CYP2C19 polymorphism and concomitant antiepileptic drugs on serum clobazam and N-desmethyl clobazam concentrations in patients with epilepsy. Ther Drug Monit. 2013; 35 (3): 305–12. https://doi.org/10.1097/FTD.0b013e318283b49a.

70. National library of medicine. DailyMed. CLOBAZAM – clobazam tablet. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo. cfm?setid=cf31b8d1-0d19-4529-99b6-1f7366064a3c (accessed 26.01.2025).

71. State Register of Medicines. Instructions for medical use of the drug Сlobazam®. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=2756180d-cf4b-4084-b3de-720eabf463c5 (in Russ.) (accessed 26.01.2025).

72. Tadtaeva Z.G., Galustyan A.N., Gromova O.A., et al. Pharmacotherapy of epilepsy. A brief reference. Moscow: GEOTAR-Media; 2023: 96 pp. (in Russ.).

73. National library of medicine. DailyMed. VIMPAT – lacosamide tablet, film coated. VIMPAT – lacosamide injection. VIMPAT – lacosamide solution. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9e79b42c-38a3-4b2c-a196-a5a1948250e2 (accessed 26.01.2025).

74. Wang J., Mei Y., Liang S., et al. How to handle a missed or delayed dose of lacosamide in pediatric patients with epilepsy? A modeinformed individual dosing. Epilepsy Behav. 2024; 151: 109601. https://doi.org/10.1016/j.yebeh.2023.109601.

75. Ahn S.J., Oh J., Kim D.Y., et al. Effects of CYP2C19 genetic polymorphisms on the pharmacokinetics of lacosamide in Korean patients with epilepsy. Epilepsia. 2022; 63 (11): 2958–69. https://doi.org/10.1111/epi.17399.

76. Biton V. Clinical pharmacology and mechanism of action of zonisamide. Clin Neuropharmacol. 2007; 30 (4): 230–40. https://doi.org/10.1097/wnf.0b013e3180413d7d.

77. Pal R., Singh K., Khan S.A., et al. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem. 2021; 226: 113890. https://doi.org/10.1016/j.ejmech.2021.113890.

78. Okada Y., Seo T., Ishitsu T., et al. Population estimation regarding the effects of cytochrome P450 2C19 and 3A5 polymorphisms on zonisamide clearance. Ther Drug Monit. 2008; 30 (4): 540–3. https://doi.org/10.1097/FTD.0b013e31817d842a.

79. Kwan P., Brodie M.J. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia. 2004; 45 (9): 1141–9. https://doi.org/10.1111/j.0013-9580.2004.12704.x.

80. Yukawa E., Mamiya K. Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non-Linear Mixed Effects Model approach. J Clin Pharm Ther. 2006; 31 (3): 275–82. https://doi.org/10.1111/j.1365-2710.2006.00712.x.

81. Lee S.M., Chung J.Y., Lee Y.M., et al. Effects of cytochrome P450 (CYP)2C19 polymorphisms on pharmacokinetics of phenobarbital in neonates and infants with seizures. Arch Dis Child. 2012; 97 (6): 569– 72. https://doi.org/10.1136/archdischild-2011-300538.

82. Manuyakorn W., Siripool K., Kamchaisatian W., et al. Phenobarbitalinduced severe cutaneous adverse drug reactions are associated with CYP2C19*2 in Thai children. Pediatr Allergy Immunol. 2013; 24 (3): 299–03. https://doi.org/10.1111/pai.12058.

83. Maan J.S., Saadabadi A. Carbamazepine. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK482455/ (accessed 26.01.2025).

84. Zawadzka I., Jeleń A., Pietrzak J., et al. The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy – preliminary report. Sci Rep. 2020; 10 (1): 6188. https://doi.org/10.1038/s41598-020-63265-4.

85. Biswas M. Predictive association of ABCB1 C3435T genetic polymorphism with the efficacy or safety of lopinavir and ritonavir in COVID-19 patients. Pharmacogenomics. 2021; 22 (6): 375–81. https://doi.org/10.2217/pgs-2020-0096.

86. Chouchi M., Kaabachi W., Klaa H., et al. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol. 2017; 17 (1): 32. https://doi.org/10.1186/s12883-017-0801-x.

87. Tishler D.M., Weinberg K.I., Hinton D.R., et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995; 36 (1): 1–6. https://doi.org/10.1111/j.1528-1157.1995.tb01657.x.

88. Zhang M.L., Chen X.L., Bai Z.F., et al. ABCB1 c.3435C>T and EPHX1 c.416A>G polymorphisms influence plasma carbamazepine concentration, metabolism, and pharmacoresistance in epileptic patients. Gene. 2021; 805: 145907. https://doi.org/10.1016/j.gene.2021.145907.

89. Fan Y.X., Zhang Z., Meng J.R., et al. Association of ABCB1 polymorphisms with carbamazepine metabolism and resistance in epilepsy: a meta-analysis. Epilepsy Res. 2021; 177: 106785. https://doi.org/10.1016/j.eplepsyres.2021.106785.

90. Rashid H.U., Ullah S., Carr D.F., et al. The association of ABCB1 gene polymorphism with clinical response to carbamazepine monotherapy in patients with epilepsy. Mol Biol Rep. 2024; 51 (1): 191. https://doi.org/10.1007/s11033-023-09061-5.

91. Djordjevic N., Cukic J., Dragas Milovanovic D., et al. ABCB1 Polymorphism is associated with higher carbamazepine clearance in children. Pediatr Rep. 2025; 17 (1): 10. https://doi.org/10.3390/pediatric17010010.

92. Zhao T., Yu J., Wang T.T., et al. Impact of ABCB1 polymorphism on levetiracetam serum concentrations in epileptic uygur children in china. Ther Drug Monit. 2020; 42 (6): 886–92. https://doi.org/10.1097/FTD.0000000000000805.

93. Zhao T., Li H.J., Feng J., et al. Impact of ABCB1 polymorphisms on lacosamide serum concentrations in uygur pediatric patients with epilepsy in china. Ther Drug Monit. 2022; 44 (3): 455–64. https://doi.org/10.1097/FTD.0000000000000927.

94. Basic S., Hajnsek S., Bozina N., et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure. 2008; 17 (6): 524–30. https://doi.org/10.1016/j.seizure.2008.01.003.

95. Keangpraphun T., Towanabut S., Chinvarun Y., Kijsanayotin P. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther. 2015; 40 (3): 315–9. https://doi.org/.1111/jcpt.12263.


Review

For citations:


Galankin N.A., Tadtaeva Z.G., Sardaryan I.S., Galustyan A.N., Gromova O.A. Impact of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms on antiepileptic drug safety and efficacy. Epilepsy and paroxysmal conditions. 2025;17(1):70-81. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.240

Views: 65


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)