Preview

Epilepsy and paroxysmal conditions

Advanced search

A novel X-linked immune-mediated actinopathy in a boy with anti-NMDA receptor encephalitis and variant in DOCK11 gene

https://doi.org/10.17749/2077-8333/epi.par.con.2025.230

Abstract

Pediatric encephalitis is a group of diseases characterized by brain disease, fever, seizures, cerebrospinal fluid pleocytosis and neuroradiological changes. Dedicator of cytokinesis proteins (DOCK) family proteins are of primary importance in actin cytoskeleton regulation. DOCK11 plays a crucial role in human immune diseases. In this paper, we describe a clinical case of anti-N-methyl-D-aspartate receptor encephalitis in a boy with a hemizygous variant in DOCK11 gene. DOCK11 deficiency is a new X-linked immunerelated actinopathy leading to impaired cell division cycle 42 (CDC42) activity and signal transducer and activator of transcription 5 (STAT5) activation. It is associated with abnormal actin cytoskeleton remodeling as well as regulatory T cell phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.

About the Authors

T. V. Kozhanova
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children; Pirogov Russian National Research Medical University
Russian Federation

Tatyana V. Kozhanova, PhD, Assoc. Prof.

38 Aviators Str., Moscow 119620;

1 bldg 6 Ostrovityanov Str., Moscow 117513



S. S. Zhylina
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children; Pirogov Russian National Research Medical University
Russian Federation

Svetlana S. Zhylina, PhD, Assoc. Prof.

38 Aviators Str., Moscow 119620;

1 bldg 6 Ostrovityanov Str., Moscow 117513



T. I. Meshcheryakova
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children; Pirogov Russian National Research Medical University
Russian Federation

Tatiana I. Meshcheryakova, PhD, Assoc. Prof.

38 Aviators Str., Moscow 119620;

1 bldg 6 Ostrovityanov Str., Moscow 117513



A. A. Abramov
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Russian Federation

Aleksandr A. Abramov

38 Aviators Str., Moscow 119620



M. M. Abidova
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Russian Federation

Maya M. Abidova

38 Aviators Str., Moscow 119620



T. S. Kaminskaya
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Russian Federation

Tatiana S. Kaminskaya, PhD

38 Aviators Str., Moscow 119620



A. I. Krapivkin
Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Russian Federation

Alexey I. Krapivkin, Dr. Sci. Med.

38 Aviators Str., Moscow 119620



N. N. Zavadenko
Pirogov Russian National Research Medical University
Russian Federation

Nikolay N. Zavadenko, Dr. Sci. Med., Prof.

1 bldg 6 Ostrovityanov Str., Moscow 117513



References

1. Messacar K., Fischer M., Dominguez S.R., et al. Encephalitis in US Children. Infect Dis Clin North Am. 2018; 32 (1): 145–62. https://doi.org/10.1016/j.idc.2017.10.007.

2. Glaser C.A., Gilliam S., Schnurr D., et al. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998–2000. Clin Infect Dis. 2003; 36 (6): 731–42. https://doi.org/10.1086/367841.

3. Venkatesan A., Tunkel A.R., Bloch K.C., et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013; 57 (8): 1114–28. https://doi.org/10.1093/cid/cit458.

4. Blincoe A., Heeg M., Campbell P.K., et al. Neuroinflammatory disease as an isolated manifestation of hemophagocytic lymphohistiocytosis. J Clin Immunol. 2020; 40 (6): 901–16. https://doi.org/10.1007/s10875-020-00814-6.

5. Ramirez G.A., Lanzani C., Bozzolo E.P., et al. TRPC6 gene variants and neuropsychiatric lupus. J Neuroimmunol. 2015; 288: 21–4. https://doi.org/10.1016/j.jneuroim.2015.08.015.

6. Guo Y., Audry M., Ciancanelli M., et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011; 208 (10): 2083–98. https://doi.org/10.1084/jem.20101568.

7. Boussard C., Delage L., Gajardo T., et al. DOCK11 deficiency in patients with X-linked actinopathy and autoimmunity. Blood. 2023; 141 (22): 2713–26. https://doi.org/10.1182/blood.2022018486.

8. Nosadini M., Thomas T., Eyre M., et al. International consensus recommendations for the treatment of pediatric NMDAR antibody encephalitis. Neurol Neuroimmunol Neuroinflamm. 2021; 8 (5): e1052. https://doi.org/10.1212/NXI.0000000000001052.

9. Malik D., Simon D.W., Thakkar K., et al. Genetic variation in genes of inborn errors of immunity in children with unexplained encephalitis. Genes Immun. 2022; 23 (7): 235–9. https://doi.org/10.1038/s41435-022-00185-5.

10. Tangye S.G., Al-Herz W., Bousfiha A., et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022; 42 (7): 1473–507. https://doi.org/10.1007/s10875-022-01289-3.

11. Vitaliani R., Mason W., Ances B., et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol. 2005; 58 (4): 594–604. https://doi.org/10.1002/ana.20614.

12. Titulaer M.J., McCracken L., Gabilondo I., et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013; 12 (2): 157–65. https://doi.org/10.1016/s1474-4422(12)70310-1.

13. Dalmau J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 cotzias lecture. Neurology. 2016; 87 (23): 2471–82. https://doi.org/10.1212/wnl.0000000000003414.

14. Dalmau J., Armangué T., Planagumà J., et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 2019; 18 (11): 1045–57. https://doi.org/10.1016/S1474-4422(19)30244-3.

15. Janssen E., Geha R.S. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev. 2019; 287 (1): 121–34. https://doi.org/10.1111/imr.12716.

16. Ramaekers F.C., Bosman F.T. The cytoskeleton and disease. J Pathol. 2004; 204 (4): 351–4. https://doi.org/10.1002/path.1665.

17. Kamnev A., Lacouture C., Fusaro M., Dupré L. Molecular tuning of actin dynamics in leukocyte migration as revealed by immunerelated actinopathies. Front Immunol. 2021; 12: 750537. https://doi.org/10.3389/fimmu.2021.750537.

18. El Masri R., Delon J. RHO GTPases: from new partners to complex immune syndromes. Nat Rev Immunol. 2021; 21 (8): 499–513. https://doi.org/10.1038/s41577-021-00500-7.

19. Lougaris V., Baronio M., Gazzurelli L., et al. RAC2 and primary human immune deficiencies. J Leukoc Biol. 2020; 108 (2): 687–96. https://doi.org/10.1002/JLB.5MR0520-194RR.

20. Su H.C., Orange J.S. The growing spectrum of human diseases caused by inherited CDC42 mutations. J Clin Immunol. 2020; 40 (4): 551–3. https://doi.org/10.1007/s10875-020-00785-8.

21. Chen Y., Chen Y., Yin W., et al. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol. 2021; 109 (2): 383–94. https://doi.org/10.1002/JLB.1MR0520-221RR.

22. Block J., Rashkova C., Castanon I., et al. Systemic inflammation and normocytic anemia in DOCK11 deficiency. N Engl J Med. 2023; 389 (6): 527–39. https://doi.org/10.1056/NEJMoa2210054.


Review

For citations:


Kozhanova T.V., Zhylina S.S., Meshcheryakova T.I., Abramov A.A., Abidova M.M., Kaminskaya T.S., Krapivkin A.I., Zavadenko N.N. A novel X-linked immune-mediated actinopathy in a boy with anti-NMDA receptor encephalitis and variant in DOCK11 gene. Epilepsy and paroxysmal conditions. 2025;17(2):170-181. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.230

Views: 13


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)