Preview

Epilepsy and paroxysmal conditions

Advanced search

The role of microRNAs as regulators of systemic inflammatory response in anticonvulsant-induced metabolic syndrome

https://doi.org/10.17749/2077-8333/epi.par.con.2025.239

Abstract

Background. Metabolic syndrome induced by antiepileptic drugs (AED-MetS) is a serious adverse reaction (AR) that reduces the quality of life of patients with epilepsy and increases the risk of comorbid cardiovascular disorders affecting life expectancy. The risk of developing AED-MetS varies depending on various factors that account for a search for sensitive and specific biomarkers to predict its development, prevention, diagnosis and correction as well as related main domains (hypertension, dyslipidemia, central obesity, type 2 diabetes mellitus). Systemic inflammatory response and oxidative stress are important arms in both epileptogenesis and neurodegeneration, as well as AED-MetS pathogenesis.
Objective: Systematization of the results from preclinical and clinical studies on the role of circulating blood microRNAs in the development and adverse course of the systemic inflammatory response as one of AED-MetS main domains in patients with epilepsy.
Material and methods. The analysis of the results of fundamental and clinical studies on circulating microRNAs as epigenetic biomarkers of systemic inflammatory reactions in the mechanism of MetS and AED-MetS pathogenesis, which were included in the databases Google Scholar, PubMed/MEDLINE, MDPI, Scopus, and eLibrary, was carried out over the last decade (2014– 2024).
Results. A systematic review has demonstrated that microRNAs can act as promising epigenetic biomarkers of AED-MetS, however, the role for different microRNAs and their paralogs on the development of this AR varies. As part of the current study, a microRNA signature was proposed depending on the risk and severity of the systemic inflammatory response and associated oxidative stress (the leading mechanisms of AED-MetS pathogenesis). The proposed signature consists of three groups of microRNAs, depending on their role in regulating the systemic inflammatory response: low, medium, and high risk.
Conclusion. The role of microRNAs in regulating the systemic inflammatory response in AED-MetS requires to be further investigated and results of basic research translated into real-world clinical practice, since the studied microRNAs can not only trigger and exacerbate AED-MetS, but also initiate or support the neurodegenerative processes underlying epileptogenesis.

About the Authors

N. A. Shnayder
Bekhterev National Medical Research Centre for Psychiatry and Neurology; Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia A. Shnayder, Dr. Sci. Med., Prof.

WoS ResearcherID: M-7084-2014. Scopus Author ID: 24503222300

3 Bekhterev Str., Saint Petersburg 192019;

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



N. A. Pekarets
Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Nikolai A. Pekarets

3 Bekhterev Str., Saint Petersburg 192019



N. I. Pekarets
Irkutsk State Medical University
Russian Federation

Natalia I. Pekarets

1 Krasnogo Vosstaniya Str., Irkutsk 664003



Yu. N. Bykov
Irkutsk State Medical University
Russian Federation

Yury N. Bykov, Dr. Sci. Med., Prof.

WoS ResearcherID: S-6938-2016. Scopus Author ID: 57200671414

1 Krasnogo Vosstaniya Str., Irkutsk 664003



V. V. Grechkina
Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Violetta V. Grechkina

Scopus Author ID: 58076147700

3 Bekhterev Str., Saint Petersburg 192019



D. V. Dmitrenko
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Diana V. Dmitrenko, Dr. Sci. Med.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022

WoS ResearcherID: H-7787-2016



M. M. Petrova
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Marina M. Petrova, Dr. Sci. Med., Prof.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022

WoS ResearcherID: L-5623-2014. Scopus Author ID: 23987271200



R. F. Nasyrova
Bekhterev National Medical Research Centre for Psychiatry and Neurology; Tula State University
Russian Federation

Regina F. Nasyrova, Dr. Sci. Med.

WoS ResearcherID: H-7787-2016

3 Bekhterev Str., Saint Petersburg 192019;

92 Lenin Ave., Tula 300012



References

1. Epilepsy: a public health imperative. Available at: https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative (accessed 24.01.2025)

2. Zhang Y.J., Kong X.M., Lv J.J., et al. Analysis of the global burden of disease study highlights the global, regional, and national trends of idiopathic epilepsy epidemiology from 1990 to 2019. Prev Med Rep. 2023; 36: 102522. https://doi.org/10.1016/j.pmedr.2023.102522.

3. Pitkänen A., Lukasiuk K., Dudek F.E., Staley K.J. Epileptogenesis. Cold Spring Harb Perspect Med. 2015; 5 (10): a022822. https://doi.org/10.1101/cshperspect.a022822.

4. Meng F., Yao L. The role of inflammation in epileptogenesis. Acta Epileptologica. 2020; 2 (1): 15. https://doi.org/10.1186/s42494-020-00024-y.

5. Borowicz-Reutt K.K., Czuczwar S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep. 2020; 72 (5): 1218–26. https://doi.org/10.1007/s43440-020-00143-w.

6. Xie J., Van Hoecke L., Vandenbroucke R.E. The impact of systemic inflammation on Alzheimer's disease pathology. Front Immunol. 2022; 12: 796867. https://doi.org/10.3389/fimmu.2021.796867.

7. Shimada T., Takemiya T., Sugiura H., Yamagata K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm. 2014; 2014: 901902. https://doi.org/10.1155/2014/901902.

8. Zhao Y., Shao W., Zhu Q., et al. Association between systemic immuneinflammation index and metabolic syndrome and its components: results from the National Health and Nutrition Examination Survey 2011–2016. J Transl Med. 2023; 21 (1): 691. https://doi.org/10.1186/s12967-023-04491-y.

9. Ramos-González E.J., Bitzer-Quintero O.K., Ortiz G., et al. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia (Engl Ed). 2024; 39 (3): 292–301. https://doi.org/10.1016/j.nrleng.2021.10.010.

10. Magheru C., Magheru S., Coltau M., et al. Antiepileptic drugs and their dual mechanism of action on carbonic anhydrase. J Clin Med. 2022; 11 (1): 2614. https://doi.org/10.3390/jcm11092614.

11. Biso L., Aringhieri S., Carli M., et al. Therapeutic drug monitoring in psychiatry: enhancing treatment precision and patient outcomes. Pharmaceuticals. 2024; 17: 642. https://doi.org/10.3390/ph17050642.

12. Costa B., Vale N. Understanding lamotrigine’s role in the CNS and possible future evolution. Int J Mol Sci. 2023; 24 (7): 6050. https://doi.org/10.3390/ijms24076050.

13. Jakovljević D., Nikolić M., Jovanović V., et al. Influence of longterm anti-seizure medications on redox parameters in human blood. Pharmaceuticals. 2024; 17 (1): 130. https://doi.org/10.3390/ph17010130.

14. Kaushik S., Chopra D., Sharma S., Aneja S. Adverse drug reactions of anti-epileptic drugs in children with epilepsy: a cross-sectional study. Curr Drug Saf. 2019; 14: 217–24. https://doi.org/10.2174/1574886314666190311112710.

15. Nazish S. Obesity and metabolic syndrome in patients with epilepsy, their relation with epilepsy control. Ann Afr Med. 2023; 22 (2): 136–44. https://doi.org/10.4103/aam.aam_139_22.

16. Beyene Kassaw A., Tezera Endale H., Hunie Tesfa K., Derbew Molla M. Metabolic syndrome and its associated factors among epileptic patients at Dessie Comprehensive Specialized Hospital, Northeast Ethiopia; a hospital-based comparative cross-sectional study. PLoS One. 2022; 17 (12): e0279580. https://doi.org/10.1371/journal.pone.0279580.

17. Nair S.S., Harikrishnan S., Sarma P.S., Thomas S.V. Metabolic syndrome in young adults with epilepsy. Seizure. 2016; 37: 61–4. https://doi.org/10.1016/j.seizure.2016.03.0021-2.

18. Chen B., Choi H., Hirsch L.J., et al. Cosmetic side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2015; 42: 129–37. https://doi.org/10.1016/j.yebeh.2014.10.021.

19. Shnayder N.A., Grechkina V.V., Trefilova V.V., et al. Valproate-induced metabolic syndrome. Biomedicines. 2023; 11 (5): 1499. https://doi.org/10.3390/biomedicines11051499.

20. Tien N., Wu T.Y., Lin C.L., et al. Association of epilepsy, anti-epileptic drugs (AEDs), and type 2 diabetes mellitus (T2DM): a populationbased cohort retrospective study, impact of AEDs on T2DM-related molecular pathway, and via peroxisome proliferator-activated receptor γ transactivation. Front Endocrinol. 2023; 14: 1156952. https://doi.org/10.3389/fendo.2023.1156952.

21. Rakitin A., Kõks S., Haldre S. Metabolic syndrome and anticonvulsants: a comparative study of valproic acid and carbamazepine. Seizure. 2016; 38: 11–6. https://doi.org/10.1016/j.seizure.2016.03.008.

22. Kovac S., Dinkova Kostova A.T., Herrmann A.M., et al. Metabolic and homeostatic changes in seizures and acquired epilepsy-mitochondria, calcium dynamics and reactive oxygen species. Int J Mol Sci. 2017; 18 (9): 1935. https://doi.org/10.3390/ijms18091935.

23. Meenakshi-Sundaram S., Sankaranarayanan M. Epilepsy, phenytoin, and atherogenic risk – current perspectives. Neurology India. 2021; 69 (4): 962–3. https://doi.org/10.4103/0028-3886.325320.

24. Asranna A., Thomas S.V. Metabolic effects of anti-seizure medications: a time to reevaluate risks? Neurol India. 2021; 69 (4): 964–5. https://doi.org/10.4103/0028-3886.325336.

25. Li Y.X., Guo W., Chen R.X., et al. The relationships between obesity and epilepsy: a systematic review with meta-analysis. PLoS One. 2024; 19 (8): e0306175. https://doi.org/10.1371/journal.pone.0306175.

26. Beghi E., Shorvon S. Antiepileptic drugs and the immune system. Epilepsia. 2011; 52 (3): 40–4. https://doi.org/10.1111/j.1528-1167.2011.03035.x.

27. Martinc B., Grabnar I., Milosheska D., et al. A cross-sectional study comparing oxidative stress in patients with epilepsy treated with old and new generation antiseizure medications. Medicina. 2024; 60 (8): 1299. https://doi.org/10.3390/medicina60081299.

28. Shnayder N.A., Grechkina V.V., Kissin M.Ya., et al. Role of neuropeptide Y in development of valproate-induced eating behaviour disorder. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2024; 16 (4): 349–61. https://doi.org/10.17749/2077-8333/epi.par.con.2024.207.

29. Dehury S., Patro P., Sahu L., et al. Evaluation of metabolic parameters on use of newer antiepileptics versus conventional antiepileptics in patients of generalised tonic-clonic seizure: an observational study. Cureus. 2023; 15 (2): e35181. https://doi.org/10.7759/cureus.35181.

30. Kośmider K., Kamieniak M., Czuczwar S.J., Miziak B. Second generation of antiepileptic drugs and oxidative stress. Int J Mol Sci. 2023; 24 (4): 3873. https://doi.org/10.3390/ijms24043873.

31. Swathi B., Aruna D. Evaluation of antioxidant effects of antiepileptic drugs in adult epileptic patients: an open label, non randomised interventional study. J Сlinical Diagn Res. 2022; 16 (10): 10–4. https://doi.org/10.7860/JCDR/2022/57376.17106.

32. Sheth R.D., Montouris G. Metabolic effects of AEDs: impact on body weight, lipids and glucose metabolism. Int Rev Neurobiol. 2008; 83: 329–46. https://doi.org/.1016/S0074-7742(08)00019-6.

33. Stols-Gonçalves D., Tristão L.S., Henneman P., Nieuwdorp M. Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease. Curr Diab Rep. 2019; 19 (6): 31. https://doi.org/10.1007/s11892-019-1151-4.

34. Pant R., Firmal P., Shah V.K., et al. Epigenetic regulation of adipogenesis in development of metabolic syndrome. Front Cell Dev Biol. 2021; 8: 619888. https://doi.org/10.3389/fcell.2020.619888.

35. Ramirez K., Niraula A., Sheridan J.F. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain Behav Immun. 2016; 51: 154–68. https://doi.org/10.1016/j.bbi.2015.08.011.

36. Gramaglia E., Ramella Gigliardi V., Olivetti I., et al. Impact of shortterm treatment with benzodiazepines and imidazopyridines on glucose metabolism in healthy subjects. J Endocrinol Invest. 2014; 37 (2): 203–6. https://doi.org/10.1007/s40618-013-0016-y.

37. Bekkouche L., Bouchenak M., Malaisse W.J., Yahia D.A. The Mediterranean diet adoption improves metabolic, oxidative, and inflammatory abnormalities in Algerian metabolic syndrome patients. Horm Metab Res. 2014; 46 (4): 274–82. https://doi.org/10.1055/s-0033-1363657.

38. Biomarkers definitions working group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69 (3): 89–95. https://doi.org/10.1067/mcp.2001.113989.

39. Califf R.M. Biomarker definitions and their applications. Exp Biol Med. 2018; 243 (3): 213–21. https://doi.org/10.1177/1535370217750088.

40. Shnayder N.A., Grechkina V.V., Petrova M.M., Nasyrova R.F. Clinical pattern of valproate-induced metabolic syndrome. Transbaikalian Medical Bulletin. 2023; 3: 89–105 (in Russ.). https://doi.org/10.52485/19986173_2023_3_89.

41. Srikanthan K., Feyh A., Visweshwar H., et al. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the west virginian population. Int J Med Sci. 2016; 13 (1): 25–38. https://doi.org/10.7150/ijms.13800.

42. Cho Y., Lee S.Y. Useful biomarkers of metabolic syndrome. Int J Environ Res Public Health. 2022; 19 (22): 15003. https://doi.org/10.3390/ijerph192215003.

43. Lauschke V.M., Zhou Y., Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther. 2019; 197: 122–52. https://doi.org/10.1016/j.pharmthera.2019.01.002.

44. Reynolds E.H. Antiepileptic drugs, folate one-carbon metabolism, genetics, and epigenetics: congenital, developmental, and neuropsychological risks and antiepileptic action. Epilepsia. 2024; 65 (12): 3469–73. https://doi.org/10.1111/epi.18120.

45. Soler-Botija C., Gálvez-Montón C., Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet. 2019; 10: 950. https://doi.org/10.3389/fgene.2019.00950.

46. Kumar S., Shanker O.R., Banerjee J., et al. Epigenetics in epilepsy. Prog Mol Biol Transl Sci. 2023; 198: 249–69. https://doi.org/10.1016/bs.pmbts.2023.01.005.

47. Mironova O.I., Berdysheva M.V., Elfimova E.M. MicroRNA: a clinician's view of the state of the problem. Part 2. MicroRNA as a biomarker. Eurasian Heart Journal. 2023; 2: 64–71 (in Russ.). https://doi.org/10.38109/2225-1685-2023-2-64-71.

48. Dexheimer P.J., Cochella L. MicroRNAs: from mechanism to organism. Front Cell Dev Biol. 2020; 8: 409. https://www.doi.org/10.3389/fcell.2020.00409.

49. Pozniak T., Shcharbin D., Bryszewska M. Circulating microRNAs in medicine. Int J Mol Sci. 2022; 23 (7): 3996. https://www.doi.org/10.3390/ijms23073996.

50. Brandão-Lima P.N., de Carvalho G.B., Payolla T.B., et al. Circulating microRNAs showed specific responses according to metabolic syndrome components and sex of adults from a population-based study. Metabolites. 2022; 13 (1): 2. https://www.doi.org/10.3390/metabo13010002.

51. Solís-Toro D., Mosquera Escudero M., García-Perdomo H.A. Association between circulating microRNAs and the metabolic syndrome in adult populations: a systematic review. Diabetes Metab Syndr. 2022; 16 (1): 102376. https://www.doi.org/10.1016/j.dsx.2021.102376.

52. Ghafouri-Fard S., Hussen B.M., Abak A., et al. Aberrant expression of miRNAs in epilepsy. Mol Biol Rep, 2022; 49: 5057–74. https://doi.org/10.1007/s11033-022-07188-5.

53. O'Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018; 9: 402. https://www.doi.org/10.3389/fendo.2018.00402.

54. Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. https://doi.org/10.1136/bmj.n71.

55. Carvalho G.B., Brandão-Lima P.N., Payolla T.B., et al. Circulating MiRNAs are associated with low-grade systemic inflammation and leptin levels in older adults. Inflammation. 2023; 46 (6): 2132–46. https://www.doi.org/10.1007/s10753-023-01867-6.

56. Menzel A., Samouda H., Dohet F., et al. Common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice-which to use regarding disease outcomes? Antioxidants. 2021; 10 (3): 414. https://doi.org/10.3390/antiox10030414.

57. Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015; 96 (Pt A): 70–82. https://doi.org/10.1016/j.neuropharm.2014.10.027.

58. McElroy P.B., Liang L.P., Day B.J., Patel M. Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol. 2017; 298 (Pt A): 13–22. https://doi.org/10.1016/j.expneurol.2017.08.009.

59. Chatterjee B., Sarkar M., Bose S., et al. MicroRNAs: key modulators of inflammation-associated diseases. Semin Cell Dev Biol. 2024; 154 (C): 364–73. https://doi.org/10.1016/j.semcdb.2023.01.009.

60. Balosso S., Liu J., Bianchi M.E., Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal. 2014; 21 (12): 1726–40. https://doi.org/10.1089/ars.2013.5349.

61. Engel T., Alves M., Sheedy C., Henshall D.C. ATPergic signalling during seizures and epilepsy. Neuropharmacology. 2016; 104: 140–53. https://doi.org/10.1016/j.neuropharm.2015.11.001.

62. Huang C., Chi X.S., Li R., et al. Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci. 2017; 63 (2): 173–84. https://doi.org/10.1007/s12031-017-0968-z.

63. Iori V., Frigerio F., Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol. 2016; 26: 118–23. https://doi.org/10.1016/j.coph.2015.11.002.

64. Li T.R., Jia Y.J., Ma C., et al. The role of the microRNA-146a/complement factor H/interleukin-1β-mediated inflammatory loop circuit in the perpetuate inflammation of chronic temporal lobe epilepsy. Dis Model Mech. 2018; 11 (3): dmm031708. https://doi.org/10.1242/dmm.031708.

65. Garcia-Oscos F., Salgado H., Hall S., et al. The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling. Biol Psychiatry. 2012; 71 (7): 574–82. https://doi.org/10.1016/j.biopsych.2011.11.018.

66. Esquivel-Rendón E., Vargas-Mireles J., Cuevas-Olguín R., et al. Interleukin 6 dependent synaptic plasticity in a social defeatsusceptible prefrontal cortex circuit. Neuroscience. 2019; 414: 280–96. https://doi.org/10.1016/j.neuroscience.2019.07.002.

67. Balosso S., Ravizza T., Aronica E., Vezzani A. The dual role of TNF-α and its receptors in seizures. Exp Neurol. 2013; 247: 267–71. https://doi.org/10.1016/j.expneurol.2013.05.010.

68. Rustenhoven J., Aalderink M., Scotter E.L., et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016; 13: 37. https://doi.org/10.1186/s12974-016-0503-0.

69. Musto A.E., Samii M. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy. Epilepsia. 2011; 52 (3): 551–61. https://doi.org/10.1111/j.1528-1167.2010.02920.x.

70. Rojas A., Jiang J., Ganesh T., et al. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014; 55 (1): 17–25. https://doi.org/10.1111/epi.12461.

71. Yagami T., Koma H., Yamamoto Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol. 2016; 53 (7): 4754–71. https://doi.org/10.1007/s12035-015-9355-3.

72. Zhong R., Chen Q., Li M., et al. Elevated blood C-reactive protein levels in patients with epilepsy: a systematic review and meta-analysis. Front Neurol. 2019; 10: 974. https://doi.org/10.3389/fneur.2019.00974.

73. Basta-Kaim A., Budziszewska B., Lasoń W. Effects of antiepileptic drugs on immune system. Przegl Lek. 2008; 65 (11): 799–802 (in Polish).

74. Dambach H., Hinkerohe D., Prochnow N., et al. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia. 2014; 55 (1): 184–92. https://doi.org/10.1111/epi.12473.

75. Godhwani N., Bahna S.L. Antiepilepsy drugs and the immune system. Ann Allergy Asthma Immunol. 2016; 117 (6): 634–40. https://doi.org/10.1016/j.anai.2016.09.443.

76. Preiser J.C. Oxidative stress. JPEN J Parenter Enteral Nutr. 2012; 36 (2): 147–54. https://doi.org/10.1177/0148607111434963.

77. Zsurka G., Kunz W.S. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015; 14 (9): 956–66. https://doi.org/10.1016/S1474-4422(15)00148-9.

78. Puttachary S., Sharma S., Stark S., Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015; 2015: 745613. https://doi.org/10.1155/2015/745613.

79. Kalozoumi G., Kel-Margoulis O., Vafiadaki E., et al. Glial responses during epileptogenesis in Mus musculus point to potential therapeutic targets. PLoS One. 2018; 13 (8): e0201742. https://doi.org/10.1371/journal.pone.0201742.

80. Kamieniak M., Kośmider K., Miziak B., Czuczwar S.J. The oxidative stress in epilepsy – focus on melatonin. Int J Mol Sci. 2024; 25 (23): 12943. https://doi.org/10.3390/ijms252312943.

81. Kobylarek D., Iwanowski P., Lewandowska Z., et al. Advances in the potential biomarkers of epilepsy. Front Neurol. 2019; 10: 685. https://doi.org/10.3389/fneur.2019.00685.

82. Masenga S.K., Kabwe L.S., Chakulya M., Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci. 2023; 24 (9): 7898. https://doi.org/10.3390/ijms24097898.

83. Čolak E., Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem. 2021; 40 (1): 1–9. https://doi.org/10.5937/jomb0-24652.

84. Rotariu D., Babes E.E., Tit D.M., et al. Oxidative stress – complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother. 2022; 152: 113238. https://doi.org/10.1016/j.biopha.2022.113238.

85. Touyz R.M., Rios F.J., Alves-Lopes R., et al. Oxidative stress: a unifying paradigm in hypertension. Can J Cardiol. 2020; 36 (5): 659–70. https://doi.org/10.1016/j.cjca.2020.02.081.

86. Marrocco I., Altieri F., Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017; 2017: 6501046. https://doi.org/10.1155/2017/6501046.

87. Forrester S.J., Kikuchi D.S., Hernandes M.S., et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018; 122 (6): 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401.

88. Thiruvengadam M., Venkidasamy B., Subramanian U., et al. Bioactive compounds in oxidative stress-mediated diseases: targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants. 2021; 10 (12): 1859. https://doi.org/10.3390/antiox10121859.

89. Shnayder N.A., Grechkina V.V., Arkhipov V.V., Nasyrova R.F. Pharmacogenetics-informed pharmacometabolomics as an innovative approach to assessing the safety and risk of pharmacotherapy with valproic acid. Safety and Risk of Pharmacotherapy. 2023; 11 (4): 450–62 (in Russ.). https://doi.org/10.30895/2312-7821-2023-386.

90. Haznedar P., Doğan Ö., Albayrak P., et al. Effects of levetiracetam and valproic acid treatment on liver function tests, plasma free carnitine and lipid peroxidation in childhood epilepsies. Epilepsy Res. 2019; 153: 7–13. https://doi.org/10.1016/j.eplepsyres.2019.03.009.

91. Ignacio-Mejía I., Contreras-García I.J., Mendoza-Torreblanca J.G., et al. Evaluation of the antioxidant activity of levetiracetam in a temporal lobe epilepsy model. Biomedicines. 2023; 11 (3): 848. https://doi.org/10.3390/biomedicines11030848.

92. Lu S.C. Regulation of glutathione synthesis. Mol Aspects Med. 2009; 30 (1–2): 42–59. https://doi.org/10.1016/j.mam.2008.05.005.

93. Kumawat M., Sharma T.K., Singh I., et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci. 2013; 5 (3): 213–9. https://doi.org/10.4103/1947-2714.109193.

94. Lettieri-Barbato D., Tomei F., Sancini A., et al. Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr. 2013; 109 (9): 1544–56. https://doi.org/10.1017/S0007114513000263.

95. Li H., Cui S., Wang S., et al. Ultrasensitive UPLC-MS/MS method for analysis of etheno-DNA adducts in human white blood cells. Free Radic Res. 2015; 49 (9): 1049–54. https://doi.org/10.3109/10715762.2015.1006213.

96. Broedbaek K., Siersma V., Henriksen T., et al. Urinary markers of nucleic acid oxidation and cancer in type 2 diabetes. Redox Biol. 2015; 4: 34–9. https://doi.org/10.1016/j.redox.2014.11.010.

97. Meredith S., Parekh G., Towler J., et al. Mapping nitro-tyrosine modifications in fibrinogen by mass spectrometry as a biomarker for inflammatory disease. Free Radic Biol Med. 2014; 75 (1): S50. https://doi.org/10.1016/j.freeradbiomed.2014.10.819.

98. Saha S. Role of microRNA in oxidative stress. Stresses. 2024; 4 (2): 269–81. https://doi.org/10.3390/stresses4020016.

99. Włodarski A., Strycharz J., Wróblewski A., et al. The role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020; 21 (18): 6902. https://www.doi.org/10.3390/ijms21186902.

100. Das K., Rao L.V.M. The role of microRNAs in inflammation. Int J Mol Sci. 2022; 23 (24): 15479. https://www.doi.org/10.3390/ijms232415479.

101. Tiwari D., Peariso K., Gross C. MicroRNA-induced silencing in epilepsy: opportunities and challenges for clinical application. Dev Dyn. 2018; 247 (1): 94–110. https://doi.org/10.1002/dvdy.24582.

102. Vasilieva A.A., Timechko E.E., Lysova K.D., et al. MicroRNAs as potential biomarkers of post-traumatic epileptogenesis: a systematic review. Int J Mol Sci. 2023; 24 (20): 15366. https://doi.org/10.3390/ijms242015366.

103. Lysova K.D., Usoltseva A.A., Domoratskaya E.A., et al. miR-134 and miR-106b are circulating biomarkers for temporal lobe epilepsy: pilot study results. Russian Open Medical Journal. 2023; 12: e0303. https://doi.org/10.15275/rusomj.2023.0303.

104. Gottmann P., Ouni M., Zellner L., et al. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep. 2020; 10: 7202. https://doi.org/10.1038/s41598-020-64326-4.

105. Sonawane S., Všianský V., Brázdil M. MicroRNA-mediated regulation of neurotransmitter receptors in epilepsy: a systematic review. Epilepsy Behav. 2024; 158: 109912. https://doi.org/10.1016/j.yebeh.2024.109912.

106. Porretti J., Dalton G.N., Massillo C., et al. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease. Int J Cancer. 2018; 143 (4): 897–906. https://doi.org/10.1002/ijc.31379.

107. Sun H., Ma D., Cheng Y., et al. The JAK-STAT signaling pathway in epilepsy. Curr Neuropharmacol. 2023; 21 (10): 2049–69. https://doi.org/10.2174/1570159X21666221214170234.

108. Cai M., Lin W. The function of NF-kappa B during epilepsy, a potential therapeutic target. Front Neurosci. 2022; 16: 851394. https://doi.org/10.3389/fnins.2022.851394.

109. Kracht M., Müller-Ladner U., Schmitz M.L. Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. J Allergy Clin Immunol. 2020; 146 (4): 694–705. https://doi.org/10.1016/j.jaci.2020.07.027.

110. Wang Y., Peng J., Bai S., et al. A PIK3R2 mutation in familial temporal lobe epilepsy as a possible pathogenic variant. Front Genet. 2021; 12: 596709. https://doi.org/10.3389/fgene.2021.596709.

111. Tang X., Chen X., Li X., et al. The TLR4 mediated inflammatory signal pathway might be involved in drug resistance in drug-resistant epileptic rats. J Neuroimmunol. 2022; 365: 577802. https://doi.org/10.1016/j.jneuroim.2021.577802.

112. Rafi S.K., Goering J.P., Olm-Shipman A.J., et al. Anti-epileptic drug topiramate upregulates TGFβ1 and SOX9 expression in primary embryonic palatal mesenchyme cells: implications for teratogenicity. PLoS One. 2021; 16 (2): e0246989. https://doi.org/10.1371/journal.pone.0246989.

113. Castañeda-Cabral J.L., Beas-Zárate C., Rocha-Arrieta L.L., et al. Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol. 2019; 328: 68–72. https://doi.org/10.1016/j.jneuroim.2018.12.007.

114. Wang N., Han X., Liu H., et al. Myeloid differentiation factor 88 is upregulated in epileptic brain and contributes to experimental seizures in rats. Exp Neurol. 2017; 295: 23–35. https://doi.org/10.1016/j.expneurol.2017.05.008.

115. Cheng L., Xia F., Li Z., et al. Structure, function and drug discovery of GPCR signaling. Mol Biomed. 2023; 4 (1): 46. https://doi.org/10.1186/s43556-023-00156-w.

116. Poonaki E., Kahlert U.D., Meuth S.G., Gorji A. The role of the ZEB1- neuroinflammation axis in CNS disorders. J Neuroinflammation. 2022; 19 (1): 275. https://doi.org/10.1016/10.1186/s12974-022-02636-2.

117. Tkachev V.O., Menshchikova E.B., Zenkov N.K. Mechanism of the NRF2/KEAP1/ARE signaling system. Biokhimiya / Biochemistry (Moscow). 2011; 76 (4): 502–19 (in Russ.).

118. Palsamy P., Bidasee K.R., Shinohara T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp Eye Res. 2014; 121: 26–34. https://doi.org/10.1016/j.exer.2014.01.021.

119. Zhao M., Li G., Zhao L. The role of SIRT1-FXR signaling pathway in valproic acid induced liver injury: a quantitative targeted metabolomic evaluation in epileptic children. Front Pharmacol. 2024; 15: 1477619. https://doi.org/10.3389/fphar.2024.1477619.

120. Zhang H., Dai S., Yang Y., et al. Role of sirtuin 3 in degenerative diseases of the central nervous system. Biomolecules. 2024; 13 (5): 735. https://doi.org/10.3390/biom13050735.

121. Yang W., Nagasawa K., Munch C., et al. Mitochondrial sirtuin network reveals dynamic sirt3-dependent deacetylation in response to membrane depolarization. Cell. 2016; 167: 985–1000.e21. https://doi.org/10.1016/j.cell.2016.10.016.

122. Tang P., Dang H., Huang J., et al. NADPH oxidase NOX4 is a glycolytic regulator through mROS-HIF1α axis in thyroid carcinomas. Sci Rep. 2018; 8: 15897. https://doi.org/10.1038/s41598-018-34154-8.

123. García-Giménez J.L., Seco-Cervera M., Tollefsbol T.O., et al. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017; 54 (7–8): 529–50. https://doi.org/10.1080/10408363.2017.1410520.

124. Martinez B., Peplow P.V. MicroRNAs as potential biomarkers in temporal lobe epilepsy and mesial temporal lobe epilepsy. Neural Regen Res. 2023; 18 (4): 716–26. https://doi.org/10.4103/1673-5374.354510.

125. Rzepka-Migut B., Paprocka J. Prospects and limitations related to the use of microrna as a biomarker of epilepsy in children: a systematic review. Life. 2021; 11: 26. https://doi.org/10.3390/life11010026.

126. De Benedittis S., Fortunato F., Cava C., et al. Circulating microRNAs as potential novel diagnostic biomarkers to predict drug resistance in temporal lobe epilepsy: a pilot study. Int J Mol Sci. 2021; 22: 702. https://doi.org/10.3390/ijms22020702.

127. Cui L., Tao H., Wang Y., et al. A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drugresistant epilepsy and seizures frequency. Seizure. 2015; 27: 60–5. https://doi.org/10.1016/j.seizure.2015.02.032.

128. Siddika T., Heinemann I.U. Bringing microRNAs to light: methods for microrna quantification and visualization in live cells. Front Bioeng Biotechnol. 2021; 8: 619583. https://doi.org/10.3389/fbioe.2020.619583.

129. Ye J., Xu M., Tian X., et al. Research advances in the detection of miRNA. J Pharm Anal. 2019; 9 (4): 217–26. https://doi.org/10.1016/j.jpha.2019.05.004.


Review

For citations:


Shnayder N.A., Pekarets N.A., Pekarets N.I., Bykov Yu.N., Grechkina V.V., Dmitrenko D.V., Petrova M.M., Nasyrova R.F. The role of microRNAs as regulators of systemic inflammatory response in anticonvulsant-induced metabolic syndrome. Epilepsy and paroxysmal conditions. 2025;17(2):208-226. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.239

Views: 15


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)