Preview

Epilepsy and paroxysmal conditions

Advanced search

Bioelectronic medicine: a new frontier for autonomic nervous system disorders

https://doi.org/10.17749/2077-8333/epi.par.con.2025.231

Abstract

Bioelectronic medicine is a field of study that is constantly evolving as a result of recent advancements and improvements in bioelectronic technology, which have led to novel approaches and perspectives in disease diagnosis and therapy, particularly in the inflammatory reflex immuno-regulatory functioning and, vagus nerve stimulation (VNS). The vagus nerve, an elongated nerve in the autonomic nervous system, controls a number of physiological processes in humans, including blood pressure, breathing rate, vasomotor activity, and certain reflex movements. Recent bioelectronic research has led to clinical tests using VNS for inflammatory diseases and other conditions. By sending steady, gentle electric impulses through the vagus nerve to the brain, bioelectronic devices can activate the vagus nerve. The integration of artificial intelligence (AI) with bioelectronic medicine is transforming drug development processes. AI technology can accelerate or even eliminate many time-consuming tasks, allowing healthcare professionals to use their time more efficiently and ultimately improving healthcare outcomes. This review discusses the vagus nerve’s roles in inflammation, stimulation, and regulation in animal models, as well as its therapeutic potential in treating human inflammation. Additionally, it examines how AI-powered bioelectronic drugs are being explored for conditions such as paralysis and immune disorders, and addresses the challenges of delivering large molecules using these drugs. The article emphasizes current trends, advancements, and the promising future applications of combining AI with bioelectronic medicine.

About the Authors

M. Dhall
Университет медицинских наук Пандита Бхагвата Даяла Шармы
India

Manish Dhall, M. Pharm., PhD



R. Tushir
Университет Г.Д. Гоенка
India

Renu Tushir, M. Pharm.



P. Sharma
Университет Шри Кришны АЮШ
India

Prerna Sharma, Assoc. Prof.



N. Rani
Университет Читкара
India

Nidhi Rani, M. Pharm., PhD, Assoc. Prof



T. Singh
Университет Читкара
India

Thakur Gurjeet Singh, Prof.



References

1. Löffler S., Melican K., Nilsson K.P.R., Richter-Dahlfors A. Organic bioelectronics in medicine. J Intern Med. 2017; 282 (1): 24–36. https://doi.org/10.1111/joim.12595.

2. Zhang J., Wang X., Vikash V., et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016: 2016: 4350965. https://doi.org/10.1155/2016/4350965.

3. Drews J. Drug discovery: a historical perspective. Science. 2000; 287 (5460): 1960–4. https://doi.org/10.1126/science.287.5460.1960.

4. López-Muñoz F., Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009; 15 (14): 1563–86. https://doi.org/10.2174/138161209788168001.

5. Fritsch G., Hitzig E. Electric excitability of the cerebrum (Über die elektrischeErregbarkeit des Grosshirns). Epilepsy Behav. 2009; 15 (2): 123–30. https://doi.org/10.1016/j.yebeh.2009.03.001.

6. Penfield W., Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937; 60 (4): 389–443.

7. Dawson G.D. Investigations on a patient subject to myoclonic seizures after sensory stimulation. J Neurol Neurosurg Psychiatry. 1947; 10 (4): 141–62. https://doi.org/10.1136/jnnp.10.4.141.

8. Haas L. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg Psychiatry. 2003; 74 (1): 9. https://doi.org/10.1136/jnnp.74.1.9.

9. Pearce J.M.S. Emil Heinrich Du Bois-Reymond (1818–96). J Neurol Neurosurg Psychiatry. 2001; 71 (5): 620. https://doi.org/10.1136/jnnp.71.5.620.

10. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117 (4): 500–44. https://doi.org/10.1113/jphysiol.1952.sp004764.

11. Pavlov V.A., Chavan S.S., Tracey K.J. Bioelectronic medicine: from preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb Perspect Med. 2020; 10 (3): a034140. https://doi.org/10.1101/cshperspect.a034140.

12. Koopman F.A., Chavan S.S., Miljko S., et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016; 113 (29): 8284–9. https://doi.org/10.1073/pnas.1605635113.

13. Bonaz B., Sinniger V., Hoffmann D., et al. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016; 28 (6): 948–53. https://doi.org/10.1111/nmo.12792.

14. Bouton C. Cracking the neural code, treating paralysis and the future of bioelectronic medicine. J Intern Med. 2017; 282 (1): 37–45. https://doi.org/10.1111/joim.12610.

15. Hochberg L.R., Serruya M.D., Friehs G.M., et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442 (7099): 164–71. https://doi.org/10.1038/nature04970.

16. Bouton C.E., Shaikhouni A., Annetta N.V., et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016; 533 (7602): 247–50. https://doi.org/10.1038/nature17435.

17. Klein E. Models of the patient-machine-clinician relationship in closed-loop machine neuromodulation. In: van Rysewyk S., Pontier M. (Eds) Machine medical ethics. Intelligent systems, control and automation: science and engineering, vol 74. Springer; 2014: 273–90. https://doi.org/10.1007/978-3-319-08108-3_17.

18. Tepper S.J., Rezai A., Narouze S., et al. Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache. 2009; 49 (7): 983–9. https://doi.org/10.1111/j.1526-4610.2009.01451.x.

19. Deuschl G., Schade-Brittinger C., Krack P., et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006; 355 (9): 896–908. https://doi.org/10.1056/NEJMoa060281.

20. Zhang L., Wu Z., Zhou J., et al. Electroacupuncture ameliorates acute pancreatitis: a role for the vagus nerve-mediated cholinergic anti-inflammatory pathway. Front Mol Biosci. 2021: 8: 647647. https://doi.org/10.3389/fmolb.2021.647647.

21. Sun F.T., Morrell M.J., Wharen R.E. Jr. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics. 2008; 5 (1): 68–74. https://doi.org/10.1016/j.nurt.2007.10.069.

22. Greenberg B.D., Malone D.A., Friehs G.M., et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology. 2006; 31 (11): 2384–93. https://doi.org/10.1038/sj.npp.1301165.

23. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454 (7203): 428–35. https://doi.org/10.1038/nature07201.

24. Chavan S.S., Tracey K.J. Essential neuroscience in immunology. J Immunol. 2017; 198 (9): 3389–97. https://doi.org/10.4049/jimmunol.1601613.

25. Laxton A.W., Tang-Wai D.F., McAndrews M.P., et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann Neurol. 2010; 68 (4): 521–34. https://doi.org/10.1002/ana.22089.

26. Tracey K.J. The inflammatory reflex. Nature. 2002; 420 (6917): 853–9. https://doi.org/10.1038/nature01321.

27. Borovikova L.V., Ivanova S., Zhang M., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405 (6785): 458–62. https://doi.org/10.1038/35013070.

28. Rosas-Ballina M., Olofsson P.S., Ochani M., et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011; 334 (6052): 98–101. https://doi.org/10.1126/science.1209985.

29. Berthoud H.R. The vagus nerve, food intake and obesity. Regul Pept. 2008; 149 (1-3): 15–25. https://doi.org/10.1016/j.regpep.2007.08.024.

30. Masi E.B., Valdés-Ferrer S.I., Steinberg B.E. The vagus neurometabolic interface and clinical disease. Int J Obes. 2018; 42 (6): 1101–11. https://doi.org/10.1038/s41366-018-0086-1.

31. Berthoud H.R., Neuhuber W.L. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000; 85 (1-3): 1–17. https://doi.org/10.1016/S1566-0702(00)00215-0.

32. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124 (4): 783–801. https://doi.org/10.1016/j.cell.2006.02.015.

33. Andersson U., Tracey K.J. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012; 30: 313–35. https://doi.org/10.1146/annurev-immunol-020711-075015.

34. Wang H., Yu M., Ochani M., et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003; 421 (6921): 384–8. https://doi.org/10.1038/nature01339.

35. Tan C., Yan Q., Ma Y., et al. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol. 2022; 13: 1015175. https://doi.org/10.3389/fneur.2022.1015175.

36. Berthoud H.R., Powley T.L. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996; 35 (1): 80–6. https://doi.org/10.1002/(SICI)1097-0029(19960901)35:1<80::AID-JEMT7>3.0.CO;2-W.

37. Bernik T.R., Friedman S.G., Ochani M., et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002; 195 (6): 781–8. https://doi.org/10.1084/jem.20011714.

38. Metz C.N., Pavlov V.A. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol. 2018; 315 (5): G651–8. https://doi.org/10.1152/ajpgi.00195.2018.

39. Levine Y.A., Koopman F.A., Faltys M., et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014; 9 (8): e104530. https://doi.org/10.1371/journal.pone.0104530.

40. Meregnani J., Clarençon D., Vivier M., et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011; 160 (1-2): 82–9. https://doi.org/10.1016/j.autneu.2010.10.007.

41. Huffman W.J., Subramaniyan S., Rodriguiz R.M., et al. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019; 12 (1): 19–29. https://doi.org/10.1016/j.brs.2018.10.005.

42. Czura C.J., Schultz A., Kaipel M., et al. Vagus nerve stimulation regulates hemostasis in swine. Shock. 2010; 33 (6): 608–13. https://doi.org/10.1097/SHK.0b013e3181cc0183.

43. Lindgren S., Stewenius J., Sjölund K., et al. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol. 1993; 28 (7): 638–42. https://doi.org/10.3109/00365529309096103.

44. Pavlov V.A., Chavan S.S., Tracey K.J. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018; 36: 783–812. https://doi.org/10.1146/annurev-immunol-042617-053158.

45. Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000; 52 (4): 595–638.

46. Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci. 2014; 182: 4–14. https://doi.org/10.1016/j.autneu.2014.01.004.

47. Jänig W., Keast J.R., McLachlan E.M., et al. Renaming all spinal autonomic outflows as sympathetic is a mistake. Auton Neurosci. 2017; 206: 60–2. https://doi.org/10.1016/j.autneu.2017.04.003.

48. Schaible H.G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014; 16 (5): 470. https://doi.org/10.1186/s13075-014-0470-8.

49. Shi Q., Liu H., Tang D., et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials. 2019; 11: 64. https://doi.org/10.1038/s41427-019-0165-3.

50. Saboowala H. (Ed.) What is neural encoding and neural decoding? Neural decoding to decipher brain activity to treat paralysis, rheumatoid arthritis and epilepsy. 2019.

51. Yaprak M. The axon reflex. Neuroanatomy. 2008; 7: 17–9.

52. Barnes P. Asthma as an axon reflex. Lancet. 1986; 1 (8475): 242–5. https://doi.org/10.1016/s0140-6736(86)90777-4.

53. Houghton B.L., Meendering J.R., Wong B.J., Minson C.T. Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin. J Physiol. 2006; 572 (Pt 3): 811–20. https://doi.org/10.1113/jphysiol.2005.104067.

54. Charkoudian N., Wallin B.G. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol. 2014; 4 (2): 825–50. https://doi.org/10.1002/cphy.c130038.

55. Dampney R.A. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016; 40 (3): 283–96. https://doi.org/10.1152/advan.00027.2016.

56. Mayer E.A. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011; 12 (8): 453–66. https://doi.org/10.1038/nrn3071.

57. Travagli R.A., Hermann G.E., Browning K.N., Rogers R.C. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006; 68: 279–305. https://doi.org/10.1146/annurev.physiol.68.040504.094635.

58. Krohn K., Uibo R., Aavik E., et al. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet. 1992; 339 (8796): 770–3. https://doi.org/10.1016/0140-6736(92)91894-e.

59. Hosoi T., Okuma Y., Matsuda T., Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci. 2005; 120 (1-2): 104–7. https://doi.org/10.1016/j.autneu.2004.11.012.

60. Xu Z.Z., Kim Y.H., Bang S., et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med. 2015; 21 (11): 1326–31. https://doi.org/10.1038/nm.3978.

61. Foley J.O., DuBois F.S. Quantitative studies of the vagus nerve in the cat: I. The ratio of sensory to motor fibers. J Compar Neurol. 1937; 67 (1): 49–67. https://doi.org/10.1002/cne.900670104.

62. Ethier C., Oby E.R., Bauman M.J., Miller L.E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature. 2012; 485 (7398): 368–71. https://doi.org/10.1038/nature10987.

63. Park C.K., Xu Z.Z., Berta T., et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron. 2014; 82 (1): 47–54. https://doi.org/10.1016/j.neuron.2014.02.011.

64. Steinberg B.E., Silverman H.A., Robbiati S., et al. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron Med. 2016; 3: 7–17.

65. Kawashima K., Fujii T., Moriwaki Y., Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012; 91 (21–22): 1027–32. https://doi.org/10.1016/j.lfs.2012.05.006.

66. Kawashima K., Fujii T., Moriwaki Y., et al. Non-neuronal cholinergic system in regulation of immune function with a focus on α7nAChRs. Int Immunopharmacol. 2015; 29 (1): 127–34. https://doi.org/10.1016/j.intimp.2015.04.015.

67. Talbot S., Foster S.L., Woolf C.J. Neuroimmunity: physiology and pathology. Annu Rev Immunol. 2016; 34: 421–47. https://doi.org/10.1146/annurev-immunol-041015-055340.

68. Pinho-Ribeiro F.A., Verri W.A. Jr., Chiu I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 2017; 38 (1): 5–19. https://doi.org/10.1016/j.it.2016.10.001.

69. Lai N.Y., Mills K., Chiu I.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med. 2017; 282 (1): 5–23. https://doi.org/10.1111/joim.12591.

70. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013; 29: 355–84. https://doi.org/10.1146/annurev-cellbio-101011-155833.

71. Bollella P., Fusco G., Tortolini C., et al. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron. 2017; 89 (Pt 1): 152–66. https://doi.org/10.1016/j.bios.2016.03.068.


Review

For citations:


Dhall M., Tushir R., Sharma P., Rani N., Singh T. Bioelectronic medicine: a new frontier for autonomic nervous system disorders. Epilepsy and paroxysmal conditions. 2025;17(3):297-307. https://doi.org/10.17749/2077-8333/epi.par.con.2025.231

Views: 14


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)