Клинико-эпидемиологические исследования лития как фактора профилактики импульсивного поведения, суицида, стрессовых расстройств указывают на необходимость восполнения эссенциальных микродоз лития при эпилепсии
https://doi.org/10.17749/2077-8333/epi.par.con.2025.246
Аннотация
Исследования, проводимые в течение последних 40 лет, указывают на эссенциальность (жизненную необходимость) ультрамикроэлемента лития. Одним из критериев эссенциальности микроэлементов является наличие результатов клинико-эпидемиологических исследований, подтверждающих негативные последствия недостаточного потребления лития в масштабе популяций. Достаточная обеспеченность литием оказывает нейропротекторное, ноотропное и нормотимическое действие. Более низкие уровни лития в крови ассоциированы с повышенным риском варикоза, расстройств сна, экстрапирамидных нарушений и бокового амиотрофического склероза. Обширная клинико-эпидемиологическая база информации демонстрирует четкую взаимосвязь более низких уровней иона лития в питьевой воде с повышенным риском самоубийств, психотических стрессовых расстройств, болезней зависимости, тяжкой преступности и импульсивного поведения (которое является фактором риска и суицидальности, и агрессивности, приводящей к тяжким преступлениям). Прием препаратов лития способствует торможению деменции (как сосудистой, так и нейродегенеративной природы) и других поведенческих нарушений, связанных со старением, включая общий риск опухолевых заболеваний, переломов, переедания и булимии. Использование препаратов на основе солей лития и повышение обеспеченности литием через питьевую воду позволяет снизить судорожную готовность, импульсивность поведения, а также риск самоубийств, тревожности и депрессии у пациентов с эпилепсией. В настоящей работе представлены результаты систематизации научной литературы по данному вопросу.
Ключевые слова
Об авторах
И. Ю. ТоршинРоссия
Торшин Иван Юрьевич, к. ф-м. н., к. х. н.
WoS ResearcherID: C-7683-2018
Scopus Author ID: 7003300274
ул. Вавилова, д. 44, корп. 2, Москва 119333
А. Н. Громов
Россия
Громов Андрей Николаевич
WoS ResearcherID: C-7476-2018
Scopus Author ID: 7102053964
ул. Вавилова, д. 44, корп. 2, Москва 119333
О. А. Громова
Россия
Громова Ольга Алексеевна, д. м. н., проф.
WoS ResearcherID: J-4946-2017
Scopus Author ID: 7003589812
ул. Вавилова, д. 44, корп. 2, Москва 119333
Список литературы
1. Amiri S., Haj-Mirzaian A., Amini-Khoei H., et al. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav. 2016; 61: 6–13. https://doi.org/10.1016/j.yebeh.2016.04.035.
2. Bahremand A., Nasrabady S.E., Ziai P., et al. Involvement of nitric oxide-cGMP pathway in the anticonvulsant effects of lithium chloride on PTZ-induced seizure in mice. Epilepsy Res. 2010; 89 (2–3): 295–302. https://doi.org/10.1016/j.eplepsyres.2010.02.001.
3. Payandemehr B., Bahremand A., Ebrahimi A., et al. Protective effects of lithium chloride on seizure susceptibility: involvement of α2-adrenoceptor. Pharmacol Biochem Behav. 2015; 133: 37–42. https://doi.org/10.1016/j.pbb.2015.03.016.
4. Ghasemi A., Saberi M., Ghasemi M., et al. Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav. 2010; 19 (4): 568–74. https://doi.org/10.1016/j.yebeh.2010.09.004.
5. Ghasemi M., Shafaroodi H., Nazarbeiki S., et al. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 2010; 18 (3): 171–8. https://doi.org/10.1016/j.yebeh.2010.04.002.
6. Lee S.A., Yang H.R., Im K., et al. Comparisons of impulsivity among patients with different subtypes of epilepsy. Epilepsy Res. 2022; 186: 106997. https://doi.org/10.1016/j.eplepsyres.2022.106997.
7. Gonzalez Stivala E., Wolfzun C., Sarudiansky M., et al. Psychiatric comorbid disorders and impulsivity in patients with drug-resistant temporal and extra-temporal focal epilepsies. Epilepsy Behav. 2024; 159: 109970. https://doi.org/10.1016/j.yebeh.2024.109970.
8. Aricò M., Arigliani E., Giannotti F., Romani M. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: a systematic review. Epilepsy Behav. 2020; 112: 107448. https://doi.org/10.1016/j.yebeh.2020.107448.
9. Syvertsen M., Koht J., Selmer K., et al. Trait impulsivity correlates with active myoclonic seizures in genetic generalized epilepsy. Epilepsy Behav. 2020; 112: 107260. https://doi.org/10.1016/j.yebeh.2020.107260.
10. Lee S.A., Choi E.J., Jeon J.Y., et al. Aggression is more strongly associated with suicidality, independent of depression, than emotional instability and impulsivity in people with epilepsy. Epilepsy Behav. 2022; 129: 108613. https://doi.org/10.1016/j.yebeh.2022.108613.
11. Lee S.A., Choi E.J., Jeon J.Y., et al. Impulsivity in persons with epilepsy: association with seizure severity and suicide risk. Epilepsy Res. 2022; 179: 106825. https://doi.org/10.1016/j.eplepsyres.2021.
12. Shakeshaft A., Panjwani N., McDowall R., et al. Trait impulsivity in juvenile myoclonic epilepsy. Ann Clin Transl Neurol. 2021; 8 (1): 138–52. https://doi.org/10.1002/acn3.51255.
13. Gama A.P., Taura M., Alonso N.B., et al. Impulsiveness, personality traits and executive functioning in patients with juvenile myoclonic epilepsy. Seizure. 2020; 82: 125–32. https://doi.org/10.1016/j.seizure.2020.09.029.
14. Garcia Espinosa A., Andrade Machado R., Borges González S., et al. Wisconsin Card Sorting Test performance and impulsivity in patients with temporal lobe epilepsy: suicidal risk and suicide attempts. Epilepsy Behav. 2010; 17 (1): 39–45. https://doi.org/10.1016/j.yebeh.2009.09.010.
15. Rafati A., Pasebani Y., Kwon C.S. Elevated suicide risk in individuals with epilepsy: a systematic review and meta-analysis. J Neurol. 2025; 272 (3): 232. https://doi.org/10.1007/s00415-025-12961-0.
16. Schrauzer G.N. Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002; 21 (1): 14–21. https://doi.org/10.1080/07315724.2002.10719188.
17. Timmer R.T., Sands J.M. Lithium intoxication. J Am Soc Nephrol. 1999; 10 (3): 666–74. https://doi.org/10.1681/ASN.V103666.
18. Folkerd E., Singer D.R., Cappuccio F.P., et al. Clearance of endogenous lithium in humans: altered dietary salt intake and comparison with exogenous lithium clearance. Am J Physiol. 1995; 268 (4 Pt 2): F718–22. https://doi.org/10.1152/ajprenal.1995.268.4.F718.
19. Aragona F., Cicero N., Nava V., et al. Blood and hoof biodistibution of some trace element (lithium, copper, zinc, strontium and, lead) in horse from two different areas of Sicily. J Trace Elem Med Biol. 2024; 82: 127378. https://doi.org/10.1016/j.jtemb.2023.127378.
20. Fazio F., Aragona F., Piccione G., et al. Lithium concentration in biological samples and gender difference in athletic horses. J Equine Vet Sci. 2022; 117: 104081. https://doi.org/10.1016/j.jevs.2022.104081.
21. Vrouwe E.X., Luttge R., Olthuis W., van den Berg A. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis. Electrophoresis. 2005; 26 (15): 3032–42. https://doi.org/10.1002/elps.200500012.
22. Zhao J., Gao P., Wu S., Zhu D. Superiority of nitric acid for deproteinization in the determination of trace lithium in serum by graphite furnace atomic absorption spectrometry. J Pharm Biomed Anal. 2009; 50 (5): 1075–9. https://doi.org/10.1016/j.jpba.2009.06.044.
23. Прокопович О.A., Волков А.Ю., Торшин И.Ю. и др. Микроэлементный состав крови пациентов с дисциркуляторной энцефалопатией. Медицинский алфавит. 2016; 1 (3): 42–8.
24. Торшин И.Ю., Громова О.А., Ковражкина Е.А. и др. Интеллектуальный анализ данных о взаимосвязях между микроэлементным составом крови и состоянием пациентов с боковым амиотрофическим склерозом указал на сниженные уровни лития и селена. Consilium Medicum. 2017; 19 (9): 88–96.
25. Vita A., De Peri L., Sacchetti E. Lithium in drinking water and suicide prevention: a review of the evidence. Int Clin Psychopharmacol. 2015; 30 (1): 1–5. https://doi.org/10.1097/YIC.0000000000000048.
26. Concha G., Broberg K., Grandér M., et al. High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ Sci Technol. 2010; 44 (17): 6875–80. https://doi.org/10.1021/es1010384.
27. Helbich M., Leitner M., Kapusta N.D. Geospatial examination of lithium in drinking water and suicide mortality. Int J Health Geogr. 2012; 11: 19. https://doi.org/10.1186/1476-072X-11-19.
28. Cipriani A., Pretty H., Hawton K., Geddes J.R. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry. 2005; 162 (10): 1805–19. https://doi.org/10.1176/appi.ajp.162.10.1805.
29. Schrauzer G.N., Shrestha K.P. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990; 25 (2): 105–13. https://doi.org/10.1007/BF02990271.
30. Ohgami H., Terao T., Shiotsuki I., et al. Lithium levels in drinking water and risk of suicide. Br J Psychiatry. 2009; 194 (5): 464–5. https://doi.org/10.1192/bjp.bp.108.055798.
31. Blüml V., Regier M.D., Hlavin G., et al. Lithium in the public water supply and suicide mortality in Texas. J Psychiatr Res. 2013; 47 (3): 407–11. https://doi.org/10.1016/j.jpsychires.2012.12.002.
32. Giotakos O., Nisianakis P., Tsouvelas G., Giakalou V.V. Lithium in the public water supply and suicide mortality in Greece. Biol Trace Elem Res. 2013; 156 (1-3): 376–9. https://doi.org/10.1007/s12011-013-9815-4.
33. Sugawara N., Yasui-Furukori N., Ishii N., et al. Lithium in tap water and suicide mortality in Japan. Int J Environ Res Public Health. 2013; 10 (11): 6044–8. https://doi.org/10.3390/ijerph10116044.
34. Ishii N., Terao T., Araki Y., et al. Low risk of male suicide and lithium in drinking water. J Clin Psychiatry. 2015; 76 (3): 319–26. https://doi.org/10.4088/JCP.14m09218.
35. Pompili M., Vichi M., Dinelli E., et al. Relationships of local lithium concentrations in drinking water to regional suicide rates in Italy. World J Biol Psychiatry. 2015; 16 (8): 567–74. https://doi.org/10.3109/15622975.2015.1062551.
36. Shiotsuki I., Terao T., Ishii N., et al. Trace lithium is inversely associated with male suicide after adjustment of climatic factors. J Affect Disord. 2016; 189: 282–6. https://doi.org/10.1016/j.jad.2015.09.070.
37. Liaugaudaite V., Mickuviene N., Raskauskiene N., et al. Lithium levels in the public drinking water supply and risk of suicide: a pilot study. J Trace Elem Med Biol. 2017; 43: 197–201. https://doi.org/10.1016/j.jtemb.2017.03.009.
38. Izsak B., Hidvegi A., Balint L., et al. Investigation of the association between lithium levels in drinking water and suicide mortality in Hungary. J Affect Disord. 2022; 298 (Pt A): 540–7. https://doi.org/10.1016/j.jad.2021.11.041.
39. Palmer A., Cates M.E., Gorman G. The association between lithium in drinking water and incidence of suicide across 15 Alabama counties. Crisis. 2019; 40 (2): 93–9. https://doi.org/10.1027/0227-5910/a000535.
40. Harandi H., Ahmadinia H., Ghaffarian-Bahraman A., et al. Correlation between lithium concentrations in drinking water and suicide attempt in the southeast of Iran. Environ Monit Assess. 2024; 196 (11): 1144. https://doi.org/10.1007/s10661-024-13325-3.
41. Kugimiya T., Ishii N., Kohno K., et al. Lithium in drinking water and suicide prevention: the largest nationwide epidemiological study from Japan. Bipolar Disord. 2021; 23 (1): 33–40. https://doi.org/10.1111/bdi.12983.
42. Barjasteh-Askari F., Davoudi M., Amini H., et al. Relationship between suicide mortality and lithium in drinking water: a systematic review and meta-analysis. J Affect Disord. 2020: 264: 234–41. https://doi.org/10.1016/j.jad.2019.12.027.
43. Memon A., Rogers I., Fitzsimmons S.M.D.D., et al. Association between naturally occurring lithium in drinking water and suicide rates: systematic review and meta-analysis of ecological studies. Br J Psychiatry. 2020; 217 (6): 667–78. https://doi.org/10.1192/bjp.2020.128.
44. Ohmura Y., Tsutsui-Kimura I., Kumamoto H., et al. Lithium, but not valproic acid or carbamazepine, suppresses impulsive-like action in rats. Psychopharmacology. 2012; 219 (2): 421–32. https://doi.org/10.1007/s00213-011-2496-9.
45. Giotakos O., Tsouvelas G., Nisianakis P., et al. A negative association between lithium in drinking water and the incidences of homicides, in Greece. Biol Trace Elem Res. 2015; 164 (2): 165–8. https://doi.org/10.1007/s12011-014-0210-6.
46. Kanehisa M., Terao T., Shiotsuki I., et al. Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals. Psychopharmacology. 2017; 234 (22): 3335–42. https://doi.org/10.1007/s00213-017-4729-z.
47. Shimodera S., Koike S., Ando S., et al. Lithium levels in tap water and psychotic experiences in a general population of adolescents. Schizophr Res. 2018; 201: 294–8. https://doi.org/10.1016/j.schres.2018.05.019.
48. Rahimi H.R., Dehpour A.R., Mehr S.E., et al. Lithium attenuates cannabinoid-induced dependence in the animal model: involvement of phosphorylated ERK1/2 and GSK-3β signaling pathways. Acta Med Iran. 2014; 52 (9): 656–63.
49. Остренко К.В., Громова О.А., Сардарян И.С. и др. Эффективность аскорбата лития на модели хронической алкогольной интоксикации. Фармакокинетика и фармакодинамика. 2017; 1: 11–21.
50. Schrauzer G.N., de Vroey E. Effects of nutritional lithium supplementation on mood. A placebo-controlled study with former drug users. Biol Trace Elem Res. 1994; 40 (1): 89–101. https://doi.org/10.1007/BF02916824.
51. Mauer S., Vergne D., Ghaemi S.N. Standard and trace-dose lithium: a systematic review of dementia prevention and other behavioral benefits. Aust N Z J Psychiatry. 2014; 48 (9): 809–18. https://doi.org/10.1177/0004867414536932.
52. Chen S., Underwood B.R., Jones P.B., et al. Association between lithium use and the incidence of dementia and its subtypes: a retrospective cohort study. PLoS Med. 2022; 19 (3): e1003941. https://doi.org/10.1371/journal.pmed.1003941.
53. Muronaga M., Terao T., Kohno K., et al. Lithium in drinking water and Alzheimer's dementia: epidemiological findings from National Data Base of Japan. Bipolar Disord. 2022; 24 (8): 788–94. https://doi.org/10.1111/bdi.13257.
54. Fajardo V.A., Fajardo V.A., LeBlanc P.J., MacPherson R.E.K. Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer's disease mortality in Texas. J Alzheimers Dis. 2018; 61 (1): 425–34. https://doi.org/10.3233/JAD-170744.
55. Kessing L.V., Gerds T.A., Knudsen N.N., et al. Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry. 2017; 74 (10): 1005–10. https://doi.org/10.1001/jamapsychiatry.2017.2362.
56. Huang R.Y., Hsieh K.P., Huang W.W., Yang Y.H. Use of lithium and cancer risk in patients with bipolar disorder: population-based cohort study. Br J Psychiatry. 2016; 209 (5): 393–9. https://doi.org/10.1192/bjp.bp.116.181362.
57. Демидов В.И., Калачева А.Г., Богачева Т.Е. и др. Изучение эффектов органической и неорганической солей лития на модели первично-генерализованных судорог у крыс. Эпилепсия и пароксизмальные состояния. 2024; 16 (2): 110–19. https://doi.org/10.17749/2077-8333/epi.par.con.2024.195.
58. Asgari M.M., Chien A.J., Tsai A.L., et al. Association between lithium use and melanoma risk and mortality: a population-based study. J Invest Dermatol. 2017; 137 (10): 2087–91. https://doi.org/10.1016/j.jid.2017.06.002.
59. Ng V.W.S., Leung M.T.Y., Lau W.C.Y., et al. Lithium and the risk of fractures in patients with bipolar disorder: a population-based cohort study. Psychiatry Res. 2024; 339: 116075. https://doi.org/10.1016/j.psychres.2024.116075.
60. Nespital T., Neuhaus B., Mesaros A., et al. Lithium can mildly increase health during ageing but not lifespan in mice. Aging Cell. 2021; 20 (10): e13479. https://doi.org/10.1111/acel.13479.
61. McColl G., Killilea D.W., Hubbard A.E., et al. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem. 2008; 283 (1): 350–7. https://doi.org/10.1074/jbc.M705028200.
62. Enderle J., Klink U., di Giuseppe R., et al. Plasma lithium levels in a general population: a cross-sectional analysis of metabolic and dietary correlates. Nutrients. 2020; 12 (8): 2489. https://doi.org/10.3390/nu12082489.
63. Zarse K., Terao T., Tian J., et al. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur J Nutr. 2011; 50 (5): 387–9. https://doi.org/10.1007/s00394-011-0171-x.
64. Ishii Y., Blundell J.E., Halford J.C., et al. Differential effects of the selective orexin-1 receptor antagonist SB-334867 and lithium chloride on the behavioural satiety sequence in rats. Physiol Behav. 2004; 81 (1): 129–40. https://doi.org/10.1016/j.physbeh.2004.01.009.
65. Hsu L.K. Treatment of bulimia with lithium. Am J Psychiatry. 1984; 141 (10): 1260–2. https://doi.org/10.1176/ajp.141.10.1260.
Рецензия
Для цитирования:
Торшин И.Ю., Громов А.Н., Громова О.А. Клинико-эпидемиологические исследования лития как фактора профилактики импульсивного поведения, суицида, стрессовых расстройств указывают на необходимость восполнения эссенциальных микродоз лития при эпилепсии. Эпилепсия и пароксизмальные состояния. 2025;17(3):315-325. https://doi.org/10.17749/2077-8333/epi.par.con.2025.246
For citation:
Torshin I.Yu., Gromov A.N., Gromova O.A. A need to replenish essential lithium microdoses in epilepsy suggested by clinical and epidemiological studies on lithium as a factor for preventing impulsive behavior, suicide, stress disorders. Epilepsy and paroxysmal conditions. 2025;17(3):315-325. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.246

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.