Preview

Epilepsy and paroxysmal conditions

Advanced search

A need to replenish essential lithium microdoses in epilepsy suggested by clinical and epidemiological studies on lithium as a factor for preventing impulsive behavior, suicide, stress disorders

https://doi.org/10.17749/2077-8333/epi.par.con.2025.246

Abstract

Studies conducted over the past 40 years point at the essentiality (vital necessity) of the ultramicroelement lithium. One of the microelement essentiality criteria relies on available clinical and epidemiological studies corroborating the negative consequences of insufficient lithium consumption on a population scale. Sufficient lithium supply exerts a neuroprotective, nootropic and normothymic effect. Lower blood lithium levels are associated with an increased risk of developing varicose veins, sleep disorders, extrapyramidal disorders and amyotrophic lateral sclerosis. Extensive clinical and epidemiological data base demonstrates a clear relationship between lower lithium-ion levels in drinking water and an increased risk of suicide, psychotic stress disorders, addiction diseases, serious crime and impulsive behavior (which is a risk factor for both suicidality and aggression leading to serious crimes). Taking lithium preparations helps to slow down dementia (both vascular and neurodegenerative forms) and other behavioral aging-associated disorders, including a total risk of tumor diseases, fractures, overeating and bulimia. The use of lithium salt-based preparations and better lithium supply through drinking water can lower seizure readiness, impulsive behavior, risk of suicide, anxiety and depression in patients with epilepsy. The current article presents the results of scientific literature systematization on this issue.

About the Authors

I. Yu. Torshin
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin, PhD

WoS ResearcherID: C-7683-2018

Scopus Author ID: 7003300274

44 corp. 2 Vavilov Str., Moscow 119333



A. N. Gromov
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Andrey N. Gromov

WoS ResearcherID: C-7476-2018

Scopus Author ID: 7102053964

44 corp. 2 Vavilov Str., Moscow 119333



O. A. Gromova
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Olga A. Gromova, Dr. Sci. Med., Prof.

WoS ResearcherID: J-4946-2017

Scopus Author ID: 7003589812

44 corp. 2 Vavilov Str., Moscow 119333



References

1. Amiri S., Haj-Mirzaian A., Amini-Khoei H., et al. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav. 2016; 61: 6–13. https://doi.org/10.1016/j.yebeh.2016.04.035.

2. Bahremand A., Nasrabady S.E., Ziai P., et al. Involvement of nitric oxide-cGMP pathway in the anticonvulsant effects of lithium chloride on PTZ-induced seizure in mice. Epilepsy Res. 2010; 89 (2–3): 295–302. https://doi.org/10.1016/j.eplepsyres.2010.02.001.

3. Payandemehr B., Bahremand A., Ebrahimi A., et al. Protective effects of lithium chloride on seizure susceptibility: involvement of α2-adrenoceptor. Pharmacol Biochem Behav. 2015; 133: 37–42. https://doi.org/10.1016/j.pbb.2015.03.016.

4. Ghasemi A., Saberi M., Ghasemi M., et al. Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav. 2010; 19 (4): 568–74. https://doi.org/10.1016/j.yebeh.2010.09.004.

5. Ghasemi M., Shafaroodi H., Nazarbeiki S., et al. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 2010; 18 (3): 171–8. https://doi.org/10.1016/j.yebeh.2010.04.002.

6. Lee S.A., Yang H.R., Im K., et al. Comparisons of impulsivity among patients with different subtypes of epilepsy. Epilepsy Res. 2022; 186: 106997. https://doi.org/10.1016/j.eplepsyres.2022.106997.

7. Gonzalez Stivala E., Wolfzun C., Sarudiansky M., et al. Psychiatric comorbid disorders and impulsivity in patients with drug-resistant temporal and extra-temporal focal epilepsies. Epilepsy Behav. 2024; 159: 109970. https://doi.org/10.1016/j.yebeh.2024.109970.

8. Aricò M., Arigliani E., Giannotti F., Romani M. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: a systematic review. Epilepsy Behav. 2020; 112: 107448. https://doi.org/10.1016/j.yebeh.2020.107448.

9. Syvertsen M., Koht J., Selmer K., et al. Trait impulsivity correlates with active myoclonic seizures in genetic generalized epilepsy. Epilepsy Behav. 2020; 112: 107260. https://doi.org/10.1016/j.yebeh.2020.107260.

10. Lee S.A., Choi E.J., Jeon J.Y., et al. Aggression is more strongly associated with suicidality, independent of depression, than emotional instability and impulsivity in people with epilepsy. Epilepsy Behav. 2022; 129: 108613. https://doi.org/10.1016/j.yebeh.2022.108613.

11. Lee S.A., Choi E.J., Jeon J.Y., et al. Impulsivity in persons with epilepsy: association with seizure severity and suicide risk. Epilepsy Res. 2022; 179: 106825. https://doi.org/10.1016/j.eplepsyres.2021.

12. Shakeshaft A., Panjwani N., McDowall R., et al. Trait impulsivity in juvenile myoclonic epilepsy. Ann Clin Transl Neurol. 2021; 8 (1): 138–52. https://doi.org/10.1002/acn3.51255.

13. Gama A.P., Taura M., Alonso N.B., et al. Impulsiveness, personality traits and executive functioning in patients with juvenile myoclonic epilepsy. Seizure. 2020; 82: 125–32. https://doi.org/10.1016/j.seizure.2020.09.029.

14. Garcia Espinosa A., Andrade Machado R., Borges González S., et al. Wisconsin Card Sorting Test performance and impulsivity in patients with temporal lobe epilepsy: suicidal risk and suicide attempts. Epilepsy Behav. 2010; 17 (1): 39–45. https://doi.org/10.1016/j.yebeh.2009.09.010.

15. Rafati A., Pasebani Y., Kwon C.S. Elevated suicide risk in individuals with epilepsy: a systematic review and meta-analysis. J Neurol. 2025; 272 (3): 232. https://doi.org/10.1007/s00415-025-12961-0.

16. Schrauzer G.N. Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002; 21 (1): 14–21. https://doi.org/10.1080/07315724.2002.10719188.

17. Timmer R.T., Sands J.M. Lithium intoxication. J Am Soc Nephrol. 1999; 10 (3): 666–74. https://doi.org/10.1681/ASN.V103666.

18. Folkerd E., Singer D.R., Cappuccio F.P., et al. Clearance of endogenous lithium in humans: altered dietary salt intake and comparison with exogenous lithium clearance. Am J Physiol. 1995; 268 (4 Pt 2): F718–22. https://doi.org/10.1152/ajprenal.1995.268.4.F718.

19. Aragona F., Cicero N., Nava V., et al. Blood and hoof biodistibution of some trace element (lithium, copper, zinc, strontium and, lead) in horse from two different areas of Sicily. J Trace Elem Med Biol. 2024; 82: 127378. https://doi.org/10.1016/j.jtemb.2023.127378.

20. Fazio F., Aragona F., Piccione G., et al. Lithium concentration in biological samples and gender difference in athletic horses. J Equine Vet Sci. 2022; 117: 104081. https://doi.org/10.1016/j.jevs.2022.104081.

21. Vrouwe E.X., Luttge R., Olthuis W., van den Berg A. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis. Electrophoresis. 2005; 26 (15): 3032–42. https://doi.org/10.1002/elps.200500012.

22. Zhao J., Gao P., Wu S., Zhu D. Superiority of nitric acid for deproteinization in the determination of trace lithium in serum by graphite furnace atomic absorption spectrometry. J Pharm Biomed Anal. 2009; 50 (5): 1075–9. https://doi.org/10.1016/j.jpba.2009.06.044.

23. Prokopovich O.A., Volkov A.Yu., Torshin I.Yu., et al. Microelement composition of the blood of patients with dyscirculatory encephalopathy. Medical Alphabet. 2016; 1 (3): 42–8 (in Russ.).

24. Torshin I.Yu., Gromova O.A., Kovrazhkina E.A., et al. Data mining of the interactions between the trace element composition of the blood and the state of the patients with the lateral amyotrophic sclerosis shown lowered levels of lithium and selenium. Consilium Medicum. 2017; 19 (9): 88–96 (in Russ.).

25. Vita A., De Peri L., Sacchetti E. Lithium in drinking water and suicide prevention: a review of the evidence. Int Clin Psychopharmacol. 2015; 30 (1): 1–5. https://doi.org/10.1097/YIC.0000000000000048.

26. Concha G., Broberg K., Grandér M., et al. High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ Sci Technol. 2010; 44 (17): 6875–80. https://doi.org/10.1021/es1010384.

27. Helbich M., Leitner M., Kapusta N.D. Geospatial examination of lithium in drinking water and suicide mortality. Int J Health Geogr. 2012; 11: 19. https://doi.org/10.1186/1476-072X-11-19.

28. Cipriani A., Pretty H., Hawton K., Geddes J.R. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry. 2005; 162 (10): 1805–19. https://doi.org/10.1176/appi.ajp.162.10.1805.

29. Schrauzer G.N., Shrestha K.P. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990; 25 (2): 105–13. https://doi.org/10.1007/BF02990271.

30. Ohgami H., Terao T., Shiotsuki I., et al. Lithium levels in drinking water and risk of suicide. Br J Psychiatry. 2009; 194 (5): 464–5. https://doi.org/10.1192/bjp.bp.108.055798.

31. Blüml V., Regier M.D., Hlavin G., et al. Lithium in the public water supply and suicide mortality in Texas. J Psychiatr Res. 2013; 47 (3): 407–11. https://doi.org/10.1016/j.jpsychires.2012.12.002.

32. Giotakos O., Nisianakis P., Tsouvelas G., Giakalou V.V. Lithium in the public water supply and suicide mortality in Greece. Biol Trace Elem Res. 2013; 156 (1-3): 376–9. https://doi.org/10.1007/s12011-013-9815-4.

33. Sugawara N., Yasui-Furukori N., Ishii N., et al. Lithium in tap water and suicide mortality in Japan. Int J Environ Res Public Health. 2013; 10 (11): 6044–8. https://doi.org/10.3390/ijerph10116044.

34. Ishii N., Terao T., Araki Y., et al. Low risk of male suicide and lithium in drinking water. J Clin Psychiatry. 2015; 76 (3): 319–26. https://doi.org/10.4088/JCP.14m09218.

35. Pompili M., Vichi M., Dinelli E., et al. Relationships of local lithium concentrations in drinking water to regional suicide rates in Italy. World J Biol Psychiatry. 2015; 16 (8): 567–74. https://doi.org/10.3109/15622975.2015.1062551.

36. Shiotsuki I., Terao T., Ishii N., et al. Trace lithium is inversely associated with male suicide after adjustment of climatic factors. J Affect Disord. 2016; 189: 282–6. https://doi.org/10.1016/j.jad.2015.09.070.

37. Liaugaudaite V., Mickuviene N., Raskauskiene N., et al. Lithium levels in the public drinking water supply and risk of suicide: a pilot study. J Trace Elem Med Biol. 2017; 43: 197–201. https://doi.org/10.1016/j.jtemb.2017.03.009.

38. Izsak B., Hidvegi A., Balint L., et al. Investigation of the association between lithium levels in drinking water and suicide mortality in Hungary. J Affect Disord. 2022; 298 (Pt A): 540–7. https://doi.org/10.1016/j.jad.2021.11.041.

39. Palmer A., Cates M.E., Gorman G. The association between lithium in drinking water and incidence of suicide across 15 Alabama counties. Crisis. 2019; 40 (2): 93–9. https://doi.org/10.1027/0227-5910/a000535.

40. Harandi H., Ahmadinia H., Ghaffarian-Bahraman A., et al. Correlation between lithium concentrations in drinking water and suicide attempt in the southeast of Iran. Environ Monit Assess. 2024; 196 (11): 1144. https://doi.org/10.1007/s10661-024-13325-3.

41. Kugimiya T., Ishii N., Kohno K., et al. Lithium in drinking water and suicide prevention: the largest nationwide epidemiological study from Japan. Bipolar Disord. 2021; 23 (1): 33–40. https://doi.org/10.1111/bdi.12983.

42. Barjasteh-Askari F., Davoudi M., Amini H., et al. Relationship between suicide mortality and lithium in drinking water: a systematic review and meta-analysis. J Affect Disord. 2020: 264: 234–41. https://doi.org/10.1016/j.jad.2019.12.027.

43. Memon A., Rogers I., Fitzsimmons S.M.D.D., et al. Association between naturally occurring lithium in drinking water and suicide rates: systematic review and meta-analysis of ecological studies. Br J Psychiatry. 2020; 217 (6): 667–78. https://doi.org/10.1192/bjp.2020.128.

44. Ohmura Y., Tsutsui-Kimura I., Kumamoto H., et al. Lithium, but not valproic acid or carbamazepine, suppresses impulsive-like action in rats. Psychopharmacology. 2012; 219 (2): 421–32. https://doi.org/10.1007/s00213-011-2496-9.

45. Giotakos O., Tsouvelas G., Nisianakis P., et al. A negative association between lithium in drinking water and the incidences of homicides, in Greece. Biol Trace Elem Res. 2015; 164 (2): 165–8. https://doi.org/10.1007/s12011-014-0210-6.

46. Kanehisa M., Terao T., Shiotsuki I., et al. Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals. Psychopharmacology. 2017; 234 (22): 3335–42. https://doi.org/10.1007/s00213-017-4729-z.

47. Shimodera S., Koike S., Ando S., et al. Lithium levels in tap water and psychotic experiences in a general population of adolescents. Schizophr Res. 2018; 201: 294–8. https://doi.org/10.1016/j.schres.2018.05.019.

48. Rahimi H.R., Dehpour A.R., Mehr S.E., et al. Lithium attenuates cannabinoid-induced dependence in the animal model: involvement of phosphorylated ERK1/2 and GSK-3β signaling pathways. Acta Med Iran. 2014; 52 (9): 656–63.

49. Ostrenko K.V., Gromova O.A., Sardaryan I.S., et al. The effectiveness of lithium ascorbate on chronic alcohol intoxication model. Pharmacokinetics and Pharmacodynamics. 2017; 1: 11–21 (in Russ.).

50. Schrauzer G.N., de Vroey E. Effects of nutritional lithium supplementation on mood. A placebo-controlled study with former drug users. Biol Trace Elem Res. 1994; 40 (1): 89–101. https://doi.org/10.1007/BF02916824.

51. Mauer S., Vergne D., Ghaemi S.N. Standard and trace-dose lithium: a systematic review of dementia prevention and other behavioral benefits. Aust N Z J Psychiatry. 2014; 48 (9): 809–18. https://doi.org/10.1177/0004867414536932.

52. Chen S., Underwood B.R., Jones P.B., et al. Association between lithium use and the incidence of dementia and its subtypes: a retrospective cohort study. PLoS Med. 2022; 19 (3): e1003941. https://doi.org/10.1371/journal.pmed.1003941.

53. Muronaga M., Terao T., Kohno K., et al. Lithium in drinking water and Alzheimer's dementia: epidemiological findings from National Data Base of Japan. Bipolar Disord. 2022; 24 (8): 788–94. https://doi.org/10.1111/bdi.13257.

54. Fajardo V.A., Fajardo V.A., LeBlanc P.J., MacPherson R.E.K. Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer's disease mortality in Texas. J Alzheimers Dis. 2018; 61 (1): 425–34. https://doi.org/10.3233/JAD-170744.

55. Kessing L.V., Gerds T.A., Knudsen N.N., et al. Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry. 2017; 74 (10): 1005–10. https://doi.org/10.1001/jamapsychiatry.2017.2362.

56. Huang R.Y., Hsieh K.P., Huang W.W., Yang Y.H. Use of lithium and cancer risk in patients with bipolar disorder: population-based cohort study. Br J Psychiatry. 2016; 209 (5): 393–9. https://doi.org/10.1192/bjp.bp.116.181362.

57. Demidov V.I., Kalacheva A.G., Bogacheva T.E., et al. The effects of organic and inorganic lithium salts assessed in rat primary generalized seizure model. Epilepsia i paroksizmal'nye sostoania / Epilepsy and Paroxysmal Conditions. 2024; 16 (2): 110–19 (in Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2024.195.

58. Asgari M.M., Chien A.J., Tsai A.L., et al. Association between lithium use and melanoma risk and mortality: a population-based study. J Invest Dermatol. 2017; 137 (10): 2087–91. https://doi.org/10.1016/j.jid.2017.06.002.

59. Ng V.W.S., Leung M.T.Y., Lau W.C.Y., et al. Lithium and the risk of fractures in patients with bipolar disorder: a population-based cohort study. Psychiatry Res. 2024; 339: 116075. https://doi.org/10.1016/j.psychres.2024.116075.

60. Nespital T., Neuhaus B., Mesaros A., et al. Lithium can mildly increase health during ageing but not lifespan in mice. Aging Cell. 2021; 20 (10): e13479. https://doi.org/10.1111/acel.13479.

61. McColl G., Killilea D.W., Hubbard A.E., et al. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem. 2008; 283 (1): 350–7. https://doi.org/10.1074/jbc.M705028200.

62. Enderle J., Klink U., di Giuseppe R., et al. Plasma lithium levels in a general population: a cross-sectional analysis of metabolic and dietary correlates. Nutrients. 2020; 12 (8): 2489. https://doi.org/10.3390/nu12082489.

63. Zarse K., Terao T., Tian J., et al. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur J Nutr. 2011; 50 (5): 387–9. https://doi.org/10.1007/s00394-011-0171-x.

64. Ishii Y., Blundell J.E., Halford J.C., et al. Differential effects of the selective orexin-1 receptor antagonist SB-334867 and lithium chloride on the behavioural satiety sequence in rats. Physiol Behav. 2004; 81 (1): 129–40. https://doi.org/10.1016/j.physbeh.2004.01.009.

65. Hsu L.K. Treatment of bulimia with lithium. Am J Psychiatry. 1984; 141 (10): 1260–2. https://doi.org/10.1176/ajp.141.10.1260.


Review

For citations:


Torshin I.Yu., Gromov A.N., Gromova O.A. A need to replenish essential lithium microdoses in epilepsy suggested by clinical and epidemiological studies on lithium as a factor for preventing impulsive behavior, suicide, stress disorders. Epilepsy and paroxysmal conditions. 2025;17(3):315-325. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.246

Views: 11


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)