Preview

Epilepsy and paroxysmal conditions

Advanced search

СURRENT CONCEPTS OF THE ROLE OF ALTERED BLOOD-BRAIN BARRIER RESISTANCE IN THE PATHOGENESIS OF CNS DISORDERS. PART II: FUNCTIONS AND MECHANISMS OF THE BLOOD-BRAIN BARRIER DAMAGE

Full Text:

Abstract

Abstract: altered permeability of the blood-brain  barrier (BBB) plays a key role in the pathogenesis of epilepsy as well as vascular, demyelinating, neurodegenerative central neural system (CNS) diseases, head injury, hypoxic-ischemic CNS damage in obstetric practice, and other common disorders.  The understanding  of functions, transport  mechanisms and mechanisms of damage  of the BBB in pathologic  settings  would allow determining  promising  ways to improve the efficacy of current diagnostics  and treatment  options.  The review article describes  brain-to-blood  and blood-to-brain  transport  and presents four main mechanisms of transcellular  transport  of bioactive substances via the BBB: simple diffusion, carrier-mediated diffusion, carrier-mediated  transport  (liquid endocytosis,  receptor-mediated  endocytosis,  absorption-mediated  transport) and efflux transport.  Our knowledge of mechanisms of BBB damage  are limited to three main types (dehiscence  of 'tight junctions' between endothelial cells, toxic damage of the membrane structures of astrocytes  and endotelial cells, and physical destruction  of the BBB). Detailed descriptions  are provided of specific features of the BBB damage associated with various pathologies – hypoxic-ischemic CNS damage, inflammation, pain, toxic exposure, tumor growth, etc. This allows to rationalize the need for objective assessment of the BBB and neural tissue condition by detecting neurospecific proteins in blood serum to choose adequate approach to treatment and rehabilitation.

About the Author

D. V. Blinov
The Russian National Research Medical University named after N.I. Pirogov of the Ministry of Health of the Russian Federation, Moscow
Russian Federation


References

1. Andrianov V.V., Gajnutdinov H.L., Gajnutdinova T.H., Muhamedshina D.I., Shtark M.B., Jepshtejn O.I. Membranotropnye jeffekty malyh doz antitel k belku S100. Bjull. jeksp. biol. med. Prilozhenie 1. 2003.

2. Berezin V.A., Shevchenko G.M., Bunjatin G.G. Cpecificheskie belki promezhutochnyh filamentov v normal noj nervnoj tkani i v opuholjah golovnogo mozga. Nejrohimija. 1987; 6: 77-81.

3. Blinov D.V. Immunofermentnyj analiz nejrospecificheskih antigenov v ocenke pronicaemosti gematojencefalicheskogo bar era pri perinatal nom gipoksicheski-ishemicheskom porazhenii CNS (kliniko-jeksperimental noe issledovanie). Diss. kand. …med. nauk. M. 2004; 153 s.

4. Blinov D.V. Obektivnye metody opredelenija tjazhesti i prognoza perinatal nogo gipoksicheski-ishemicheskogo porazhenija CNS. Akusherstvo, ginekologija i reprodukcija. 2011; 2: 5-12.

5. Blinov D.V. Sovremennye predstavlenija o roli narushenija rezistentnosti gematojencefalicheskogo bar era v patogeneze zabolevanij CNS. Chast 1: Stroenie i formirovanie gematojencefalicheskogo bar era. Jepilepsija i paroksizmal nye sostojanija. 2013; 3: 65-75.

6. Blinov D.V., Terent ev S.S. Belkovye markery gipoksicheski-ishemicheskogo porazhenija CNS v perinatal nom periode. Nejrohimija. 2013; 30 (1): 22-28.

7. Blinov D.V., Terent ev S.S. Harakteristika biohimicheskih markerov narushenija pronicaemosti gematojencefalicheskogo bar era i funkcionirovanija central noj nervnoj sistemy. Nejrohimija. 2013; 30 (3): 179-192.

8. Bredberi M. Koncepcija gematojencefalicheskogo bar era. M. 1983; 480 s.

9. Volodin N.N., Rogatkin S.O., Kuchinskas A. Diagnostika i prognoz porazhenij CNS u nedonoshennyh detej v rannem neonatal nom periode. Tez. dokl. nauchno-pr. konf. «Aktual nye problemy pediatrii». Tambov. 1990; 25-26.

10. Groppa S.A., Chehonin V.P. Specificheskie antigeny mozga kak pokazateli pronicaemosti gematojencefalicheskogo bar era pri bolezni Al cgejmera. Zh. nevropat. i psihiatr. 1998; 3: 50-52.

11. Gurina O.I. Kliniko-immunohimicheskaja ocenka narushenij funkcij ge- matojencefalicheskogo bar'era u novorozhdennyh detej s perinatal'nymi porazhe-nijami CNS. Diss. kand. …med. nauk. 1996; 142 s.

12. Gurina O.I., Rjabuhin I.A., Anin A.N. Issledo- vanie pronicaemosti GJeB u novorozhdennyh krysjat v uslovijah inducirovannyh gipertermicheskih sudorog. Bjull. jeksp. biol. i med. 1997; 123 (2): 146-149.

13. Gurina O.I., Rjabuhin I.A., Rogatkin S.O. Immunofermentnyj analiz NSB i antitel k nim v ocenke perinatal'nyh porazhenij CNS u nedonoshennyh detej. Pediatrija. 1995; 3: 15-19.

14. Gusev E.I., Demina T.L. Rassejannyj skleroz. Consilium Medicum. 2000; 2: 16-18.

15. Dzhobava Je.M., Nekrasova K.R., Artizanova D.P., Hejdar L.A., Sudakova G.Ju., Daneljan S.Zh., Blinov D.V., Dobrohotova Ju.Je. Disfunkcija jendotelija i sistema gemostaza v gruppah riska po razvitiju akusherskoj patologii. Sistemnyj podhod k diagnostike i terapii. Akusherstvo, ginekologija i reprodukcija. 2013; 1: 45-53.

16. Zabolevaemost' vsego naselenija Rossii v 2011 godu. Statisticheskie materialy. Minzdravsocrazvitija Rossii. Departament analiza, prognoza, razvitija zdravoohranenija i medicinskoj nauki. FGBU «Central'nyj nauchno-issledovatel'skij institut organizacii i informatizacii zdravoohranenija» Minzdrava. M. 2012. 138 s.

17. Lidzhieva R.C. Specificheskie belki nervnoj tkani v ocenke pronicaemosti gematojenefalicheskogo bar'era pri komatoznyh sostojanijah u detej. Diss. kand.…med. nauk. 1990; 218 s.

18. Petrov S.V., Lebedev S.V., Blinov D.V., Gurina O.I., Chehonin V.P. Immunofermentnyj analiz nejrospecificheskih belkov v SMZh i syvorotke krovi u krys pri modelirovanii ishemii golovnogo mozga. Materialy XIV Sezda psihiatrov Rossii. M. 2005: s. 494.

19. Rogatkin S.O. Kliniko-nejrosonograficheskie i immunohimicheskie kriterii diagnostiki i prognoza perinatal'nyh porazhenij CNS u novorozhdennyh detej razlichnogo gestacionnogo vozrasta. Avtoref. diss. kand.…m. nauk. 1993; 23 s.

20. Rjabuhin I.A., Dmitrieva T.B., Chehonin V.P. Gematojencefalicheskij bar'er (chast' I). Jembriomorfogenez, kletochnaja i subkletochnaja biologija plotnyh kontaktov jendoteliocitov. Nejrohimija. 2003; 20: 12-23.

21. Timofeeva L.A. Kliniko-immunohimicheskaja ocenka narushenij pronicaemosti GJeB u plodov i novorozhdennyh s giperbilirubinemiej. Diss. kand. …med. nauk. 1999; 132 s.

22. Chehonin V.P., Asanova L.M., Gavrilenko A.Ja. Immunofermentnyj analiz nejrospecificheskih belkov v syvorotke krovi bol'nyh jepilepsiej. ZhNIP im. S.S. Korsakova. 1995; 3: 30-31.

23. Chehonin V.P., Dmitrieva T.B., Zhirkov Ju.A. Immunohimicheskij analiz nejrospecificheskih antigenov. M. 2000; 416 s.

24. Chehonin V.P., Lebedev S.V., Dmitrieva T.B., Blinov D.V., Gurina O.I., Semenova A.V., Volodin N.N. «Immunofermentnyj analiz NSE i GFAP, kak kriterij dinamicheskoj ocenki pronicaemosti gematojencefalicheskogo bar'era krys pri perinatal'nom gipoksicheski- ishemicheskom porazhenii CNS». Bjull. jeksp. biol. med. 2003; 136 (9): 299-303.

25. Chehonin V.P., Lidzhieva R.C., Koroteeva. Shtark M.B. Mozgospecificheskie belki (antigeny) nervnoj tkani i funkcii nejrona. M. 1985; 313 s.

26. Abbruscato T.J., Davis T.P. Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity. J. Pharmacol. Exp. Ther. 1999; 289: 668-675.

27. Abbruscato T.J., Lopez S.P., Mark K.S., Hawkins B.T., Davis T.P. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci. 2002; 91: 2525-2538.

28. Abbruscato T.J., Lopez S.P., Roder K., Paulson J.R. Regulation of Blood-Brain Barrier Na,K,2Cl-Cotransporter through Phosphorylation during in Vitro Stroke Conditions and Nicotine Exposure. The Journal of Pharmacology and Experimental Therapeutics. 2004; 310: 459-468.

29. Abel H.T., Von-Rohden L., Lamme W. Intracerebral hemorrhage and neuron- specific enolase in premature and full-term infants - a clinical study. Padiatr. Grenzgeb. 1993; 31 (3): 133-140.

30. Albrechtsen M., Bock E. Quantification of glial fibrillary acidic protein (GFAP) in human body fluids by means of ELISA employing a monoclonal antibody. J. Neuroimmunol. 1985; 8: 301-309.

31. Albrechtsen M., Massaro A., Bock E. Enzyme-linked immunosorbent assay for human glial fibrillary acidic protein using a mouse monoclonal antibody. J. Neurochem. 1985; 44: 560-565.

32. Antonetti D.A., Barber A.J., Khin S., Lieth E., Tarbell J.M., Gardner T.W. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. The Penn State Retina Research Group. Diabetes. 1998; 47: 1953-1959.

33. Babu P.P., Kumari L.R., Vemuri M.C. Differential changes in cell morphology, macromolecular composition and membrane protein profiles of neurons and astrocytes in chronic ethanol treated rats. Mol. Cell. Biochem. 1994; 12 (130 (1)): 29-40.

34. Begley D.J. ABC Transporters and the blood- brain barrier. Current Pharmaceutical Design. 2004; 10: 1295-1312.

35. Begley D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacology & Therapeutics. 2004; 104; 29-45.

36. Begley D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacology & Therapeutics. 2004; 104; 29-45.

37. Begley D.J., Bradbery M.W., Kreuter J. The Blood-bbrain Barrier and Drug Delivery to the CNS. Marcel Dekker, Inc. New York. 2000.

38. Blennow M., Rosengren L., Jonsson S., Forssberg H., Glial fibrillary acidic protein is increased in the cerebrospinal fluid of preterm infants with abnormal neurological findings. Acta Pædiatr. 1996; 85: 485-489.

39. Blinov D.V., Terent’ev S.S. Protein markers of hypoxic–ischemic lesions of the CNS in the perinatal period. Neurochemical Journal. 2013; 7 (1): 16-22.

40. Blinov D.V., Terent’ev S.S. Characterization of biochemical markers of blood-brain- barrier permeability and the functioning of the central nervous system. Neurochemical Journal. 2013; 7 (3): 159-170.

41. Bolton S.J., Anthony D.C., Perry V.H. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience. 1998; 86: 1245-1257.

42. Bonhomme V., Hans P., Collette I., Moonen G. Neuron-specific enolase as a marker of in vitro neuronal damage. Part III. Investigation of the astrocyte protective effect against keinate-induced neurotoxicity. J. Neurosurg. Anesthesiol. 1993; 2: 9-22.

43. Braun L.D., Cornford E.M., Oldendorf W.H. Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem. 1980; 34: 147-152.

44. Brenton D.P., Gardiner R.M. Transport of L-phenylalanine and related amino acids at the ovine blood-brain barrier. J. Physiol. 1988; 402: 497-514.

45. Chehade J.M., Haas M.J., Mooradian A.D. Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 2002; 27: 249-252.

46. Cipolla M.J., Crete R., Vitullo L., Rix R.D. Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Front Biosci. 2004; 9: 777-785.

47. Cornford E.M., Braun L.D., Oldendorf W.H. Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain. Pediatr Res. 1982; 16: 324-328.

48. Dallasta L.M., Pisarov L.A., Esplen J.E., Werley J.V., Moses A.V., Nelson J.A., Achim C.L. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 1999; 155: 1915-1927.

49. de Vries H.E., Dijkstra D.D. Mononuclear phagocytes at the blood-brain barrier in multiple sclerosis. In Blood-Spinal Cord and Brain Barriers in Health and Disease (Sharma H.S. and Westman J. eds.). 2004; 409-417, Elsevier, San Diego.

50. Dotevall L., Rosengren L.E., Hagberg L. Increased cerebrospinal fluid levels of glial fibrillary acidic protein (GFAP) in Lyme neuroborreliosis. Infection. 1996; 24: 125- 129.

51. Duelli R., Staudt R., Grunwald F., Kuschinsky W. Increase of glucose transporter densities (Glut1 and Glut3) during chronic administration of nicotine in rat brain. Brain Res. 1998; 782: 36-42.

52. Duelli R., Staudt R., Maurer M.H., Kuschinsky W. Local transport kinetics of glucose during acute and chronic nicotine infusion in rat brains. J. Neural. Transm. 1998; 105: 1017-1028.

53. Duvernoy H.M., Risold P.Y. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev. 2007; 5: 119-147.

54. Dvorak H.F., Harvey V.S., Estrella P., Brown L.F., McDonagh J., Dvorak A.M. Fibrin containing gels induce angiogenesis: implications for tumor stroma generation and wound healing. Lab Invest. 1987; 57: 673-686.

55. Dziegielewska K.M., Saunders N.R. The ins and outs of brain-barrier mechanisms. Trends Neurosci. 2002; 25 (2): 69-71.

56. Edwards R.H. Drug delivery via the blood–brain barrier. Nat. Neurosci. 2001; 4: 221-222.

57. Eng L.F. Glial fibrillary acidic protein (GFAP): The maior protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 1981; 8: 203-214.

58. Eng L.F., Ghirnikar R.S. GFAP and astrogliosis. Brain. Pathol. 1994; 4 (3): 229-237.

59. Fiala M., Gan X.H., Zhang L., House S.D., Newton T., Graves M.C., Shapshak P., Stins M., Kim K.S., Witte M., Chang S.L. Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine's connection to AIDS dementia and vasculitis? Adv Exp Med Biol. 1998; 437: 199-205.

60. Fiala M., Liu Q.N., Sayre J., Pop V., Brahmandam V., Graves M.C., Vinters H.V. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood-brain barrier. Eur. J. Clin. Investig. 2002; 32: 360-371.

61. Fischer S., Clauss M., Wiesnet M., Renz D., Schaper W., Karliczek G.F. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. 1999; 276: 812-820.

62. Fischer S., Wobben M., Kleinstuck J., Renz D., Schaper W. Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am. J. Physiol. Cell. Physiol. 2000; 279: 935-944.

63. Frank H.J., Jankovic-Vokes T., Pardridge W.M., Morris W.L. Enhanced insulin binding to blood–brain barrier in vivo and to brain microvessels in vitro in newborn rabbits. Diabetes. 1985; 34: 728-733.

64. Gan X., Zhang L., Berger O., Stins M.F., Way D., Taub D.D., Chang S.L., Kim K.S., House S.D., Weinand M., Witte M., Graves M.C., Fiala M. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol. 1999; 91: 68-76.

65. Gasse H., Meyer W. Neuron-specific enolase as a marker of hypothalamo- neurohypophyseal development in postnatal Monodelphis domestica (Marsupialia). Neurosci. Lett. 1995; 189 (1): 54-56.

66. Golden P.L., Pollack G.M. Blood-brain barrier efflux transport. J. Pharm. Sci. 2003; 92: 1739-1753.

67. Goldstein L.B., Adams R., Becker K., Furberg C.D., Gorelick P.B., Hademenos G., Hill M., Howard G., Howard V.J., Jacobs B., Levine S.R., Mosca L., Sacco R.L., Sherman D.G., Wolf P.A., del Zoppo G.J. Primary prevention of ischemic stroke: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2001; 32: 280-299.

68. Groothuis D.R., Vavra M.W., Schlageter K.E., KangE.W.Y., Itskovich A.I., Hertzler S., Allen C.V., Lipton H.L. Efflux of drugs and solutes from brain: the interactive roles of

69. diffusional transcapillary transport, bulk flow and capillary transporters. Journal of Cerebral Blood Flow & Metabolism. 2007; 27: 43-56.

70. Gursoy-Ozdemir Y., Qiu J., Matsuoka N., Bolay H., Bermpohl D., Jin H., Wang X., Rosenberg G.A., Lo E.H., Moskowitz M.A. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Investig. 2004; 113: 1447-1455.

71. Jackson M. J., Turkington D. Depression and anxiety in epilepsy. J. Neurol. Neurosurg. Psychiatry. 2005; 76 (1): 45-47.

72. Hardemark H., Ericsson N., Kotwica Z., Rundstrom G., Mendel-Hartvig I., Olsson Y., Pahlmann S., Persson L. S-100 protein and neuron-specific enolase on CSF after experimental traumatic or focal ischemic brain damage. J. Neurosurg. 1989; 71: 727-731.

73. Hardemark H., Persson L., Bolander H., Hillered L., Olsson Y., Pahlman S. Neuron- specific enolase is a marker of cerebral ischemia and infarct size in rat cerebrospinal fluid. Stroke. 1988; 19: 1140-1444.

74. Hartfield R.H., Mckernan R.M. CSF neuron- specific enolase as a quantitative marker of neuronal damage in a rat sroke model. Brain Res. 1992; 2: 249-252.

75. Hawkins B.T., Abbruscato T.J., Egleton R.D., Brown R.C., Huber J.D., Campos C.R., Davis T.P. Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004; 1027: 48-58.

76. Hawkins B.T., Brown R.C., Davis T.P. Smo- king and ischemic stroke: a role for nicotine? Trends Pharmacol. 2002; 23: 78-82.

77. Hawkins B.T., Davis T.P. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacol Rev. 2005; 57: 173-185.

78. Hayashi K., Nakao S., Nakaoke R., Nakagawa S., Kitagawa N., Niwa M. Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul. Pept. 2004; 123: 77-83.

79. Huber J.D., Egleton R.D., Davis T.P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001; 24: 719-725.

80. Huber J.D., Hau V.S., Borg L., Campos C.R., Egleton R.D., Davis T.P. Blood-brain barrier tight junctions are altered during a 72-h exposure to lambdacarrageenan- induced inflammatory pain. Am. J. Physiol. Heart. Circ. Physiol. 2002; 283: 1531-1537.

81. Huber J.D., Witt K.A., Hom S., Egleton R.D., Mark K.S., Davis T.P. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart. Circ. Physiol. 2001; 280: 1241-1248.

82. Ilzecka J. The structure and function of blood-brain barrier in ischaemic brain stroke process. Ann. Univ. Mariae Curie Sklodowska. 1996; 51:123-127.

83. Ito U., Go K.G., Walker J.T. Experimental cerebral ischemia in mongolian gerbils. Behavior of the blood-brain barrier. Acta Neuropath. 1976; 34: 1-6.

84. Kalman M. GFAP expression withdraws – a trend of glial evolution? Brain Res. Bulletin. 2002; 57: 509-511.

85. Kempski O. Cerebral edema. Semin. Nephrol. 2001; 21: 303-307.

86. Kondo T., Kinouchi H., Kawase M., Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/ reoxygenation. Neurosci Lett. 1996; 208: 101-104.

87. Lee J.C., Olszewski J. Increased cerebrovascular permeability after repeated electroshocks. Neurology. 1996; 11: 515-519.

88. Liebner S., Fischmann A., Rascher G., Duffner F., Grote E.H., Kalbacher H., Wolburg H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. (Berl.). 2000; 100: 323-331.

89. Liu Y., Wu Y., Lee J.C., Xue H., Pevny L.H., Kaprielian Z., Rao M.S. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia. 2002; 40: 25-43.

90. Löscher W., Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Progress in Neurobiology. 2005; 76 (1): 22-76.

91. Löscher W., Potschka H. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family. NeuroRx. 2005; 2 (1): 86-98.

92. Mark K.S., Davis T.P. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart. Circ. Physiol. 2002; 282: 1485-1494.

93. McQuaid S., Plumb J., Mirakhur M., Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Neuropathol. Appl. Neurobiol. 2002; 28: 153.

94. Miller D.B., Blekman C.F., O'Callagan J.P. An increase glial fibrillary acidic protein follows brain hypertyermia in rats. Brain Res. 1987; 415: 371-374.

95. Minagar A., Alexander J.S. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003; 9: 540-549.

96. Morganti-Kossmann M.C., Rancan M., Stahel P.F., Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care. 2002; 8: 101-105.

97. Morrissey S.P., Stodal H., Zettl U., Simonis C., Jung S., Kiefer R., Lassmann H., Hartung H.P., Haase A., Toyka K.V. In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain. 1996; 119: 239-248.

98. Nath A., Maragos W.F., Avison M.J., Schmitt F.A., Berger J.R. Acceleration of HIV dementia with methamphetamine and cocaine. J. Neurovirol. 2001; 7: 66-71.

99. Neuwelt E.A. Mechanisms of disease: the blood–brain barrier. Neurosurgery. 2004; 54: 131-142.

100. Niebroj-Dobosz I., Rafalowska J., Lukasiuk M. Immunochemical analysis of some proteins in cerebrospinal fluid and serum of patients with ischemic strokes. Folia Neuropathol. 1994; 32 (3): 129-137.

101. Padget D.N. The development of the cranial arteries in the human embrio. Carnegie Inst. Publ. 575, Contribution to Embriology. 1948; 32: 205-261.

102. Papadopoulos M.C., Saadoun S., Binder D.K., Manley G.T., Krishna S., Verkman A.S. Molecular mechanisms of brain tumor edema. Neuroscience. 2004; 129: 1011-1020.

103. Papadopoulos M.C., Saadoun S., Woodrow C.J., Davies D.C., Costa-Martins P., Moss R.F., Krishna S., Bell B.A. Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol. Appl. Neurobiol. 2001; 27: 384-395.

104. Pardridge W.M. Transport of nutrients and hormones through the blood-brain barrier. Fed. Proc. 1984; 43: 201-204.

105. Pardridge W.M. Neurotrophins, neuroprotection and the blood-brain barrier. Curr. Opin. Investig. Drugs. 2002; 3 (12): 1753-1757.

106. Petty M.A., Lo E.H. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol. 2002; 68: 311-323.

107. Petty M., Wettstein J. Elements of cerebral microvascular ischaemia. Brain Res. Reviews. 2001; 36: 23-34.

108. Plateel M., Teissier E., Cecchelli R. Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem. 1997; 68: 874-877.

109. Pluta R. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. Acta Neurochir. Suppl. 2003; 86: 117-122.

110. Rosengren L.E., Haglid K.G. Long term neurotoxicity of styrene. A quantitative study of glil fibrillary acidic protein (GFAP) and S-100. Brit. J. Industr. Med. 1989; 46: 316-320.

111. Sanchez-del-Rio M., Reuter U. Migraine aura: new information on underlying mechanisms. Curr. Opin. Neurol. 2004; 17:289-293.

112. Seeldrayers P.A., Syha J., Morrissey S.P., Stodal H., Vass K., Jung S., Gneiting T., Lassmann H., Haase A., Hartung H.P. Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1993; 46: 199-206.

113. Shusta V.E. Blood-Brain Barrier Genomics, Proteomics, and New Transporter Discovery. NeuroRx. 2005; 2 (1): 151-161.

114. Song L., Pachter J.S. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res. 2004; 67: 78-89.

115. van Bruggen N., Thibodeaux H., Palmer J.T., Lee W.P., Fu L., Cairns B., Tumas D., Gerlai R., Williams S.P., van Lookeren Campagne M., Ferrara N. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Investig. 1999; 104: 1613-1620.

116. Wakai S, Hirokawa N. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell. Tissue Res. 1978; 195: 195-203.

117. Wardlaw J.M., Sandercock P.A., Dennis M.S., Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis and dementia? Stroke. 2003; 34: 806-812.

118. Witt K.A., Mark K.S., Hom S., Davis T.P. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003; 285: 2820-2831.

119. Witt K.A., Mark K.S., Huber J., Davis T.P. Hypoxia-inducible factor and nuclear factor kappa-B activation in blood-brain barrier endothelium under hypoxic/reoxygenation stress. J. Neurochem. 2005; 92: 203-214.

120. Wolburg H., Wolburg-Buchholz K., Kraus J., Rascher-Eggstein G., Liebner S., Hamm S., Duffner F., Grote E.H., Risau W., Engelhardt B. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. 2003; Acta Neuropathol. 105: 586-592.

121. Wolka A.M., Huber J.D., Davis T.P. Pain and the blood-brain barrier: obstacles to drug delivery. Advanced Drug Delivery Reviews. 2003; 55: 987-1006.

122. Xiang J., Ennis S.R., Abdelkarim G.E., Fujisawa M., Kawai N., Keep R.F. Glutamine transport at the blood-brain and blood-cerebrospinal fluid barriers. Neurochem. Int. 2003; 43 (4-5): 279-288.

123. Zhang L., Looney D., Taub D., Chang S.L., Way D., Witte M.H., Graves M.C., Fiala M. Cocaine opens the blood-brain barrier to HIV-1 invasion. J. Neurovirol. 1998; 4: 619-626.

124. Wang H., Dwyer-Lindgren L., Lofgren K.T., Rajaratnam J.K., Marcus J.R., Levin-Rector A., Levitz C.E., Lopez A.D., Murray C.J. Lancet. 2012; 380: 2071-2094.


For citation:


Blinov D.V. СURRENT CONCEPTS OF THE ROLE OF ALTERED BLOOD-BRAIN BARRIER RESISTANCE IN THE PATHOGENESIS OF CNS DISORDERS. PART II: FUNCTIONS AND MECHANISMS OF THE BLOOD-BRAIN BARRIER DAMAGE. Epilepsy and paroxysmal conditions. 2014;6(1):70-84. (In Russ.)

Views: 303


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)