Preview

Epilepsy and paroxysmal conditions

Advanced search

Pharmacogenetics of carbamazepine

https://doi.org/10.17749/2077-8333.2019.11.4.364-378

Full Text:

Abstract

Carbamazepine (CMZ) is a drug from the group of anticonvulsants, similar in chemical structure to tricyclic antidepressants. CMZ is widely used for mental disorders and neurological diseases. The lecture discusses the safety of CMZ in respect to personalized medicine, while considering the pharmacogenetic profile of the patient.

The authors declare about the absence of conflict of interest with respect to this publication. All authors contributed equally to this article.

About the Authors

N. A. Shnayder
Bekhterev National Medical Research Center of Psychiatry and Neurology
Russian Federation
Natalia A. Shnayder – MD, PhD, Professor, Leading Researcher, Department of Personalized Psychiatry and Neurology, Bechterev National Medical Research Center of Psychiatry and Neurology. Elibrary ID: 185359; SPIN-код: 6517-0279; Researcher ID: M-7084- 2014; Scopus ID: 24503222300


E. N. Bochanova
Bekhterev National Medical Research Center of Psychiatry and Neurology; Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation
Elena N. Bochanova – MD, PhD, Consulting Physician, Department of Personalized Psychiatry and Neurology, Bechterev National Medical Research Center of Psychiatry and Neurology, Associate Professor at the Department of Pharmacology, VoinoYasenetsky State Medical University, City of Krasnoyarsk. Elibrary ID: 752926; SPIN-код: 2572-0525; Researcher ID: V-9286- 2018


D. V. Dmitrenko
Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation
Diana V. Dmitrenko – MD, PhD, Head of the Neurological Center for Epileptology and Neurogenetics, Head of the Department of Medical Genetics and Clinical Neurophysiology, IPO, Voino-Yasenetsky State Medical University, City of Krasnoyarsk. Elibrary ID: 614958; SPIN-код: 9180-6623; Researcher ID: H-7787-2016; Scopus ID: 55413907300


R. F. Nasyrova
Bekhterev National Medical Research Center of Psychiatry and Neurology
Russian Federation
Regina F. Nasyrova – MD, PhD, Chief Scientist, Head of the Department of Personalized Psychiatry and Neurology, Bechterev National Medical Research Center of Psychiatry and Neurology. Elibrary ID: 551543; SPIN-код: 3799-0099; Researcher ID: B-1259-2014; Scopus ID: 15769218400


References

1. Mazo G. E., Lipatova L.V., Zhukov N. E. Disorders of the bipolar spectrum in epilepsy. Zhurnal Obozrenie psikhiatrii i meditsinskoi psikhologii im. V.M. Bekhtereva (in Russ.). 2016; 3: 30-40.

2. Harris M., Chandran S., Chakraborty N., Healy D. Mood-stabilizers: the archeology of the concept. Bipolar Disord. 2003; 5 (6): 446-452.

3. Amann B., Grunze H., Vieta E., Trimble M. Antiepileptic drugs and mood stability. Clin EEG Neurosci. 2007; 38 (2): 116-123. DOI: 10.1177/155005940703800214.

4. Schindler W., Häfliger F. Über Derivate des Iminodibenzyls. Helvetica Chimica Acta. 1954; 37 (2): 472-483.

5. Okuma T., Kishimoto A. A history of investigation on the mood stabilizing effect of carbamazepine in Japan. Psychiatry Clin Neurosc. 1998; 52 (1): 3-12.

6. Sardar K., Rashid M.A., Khandoker M.R., Khan A.N. Anticonvulsants and antidepressants in chronic pain management. J Recent Adv Pain. 2016; 2 (3): 90-93. DOI: 10.5005/jp-journals-10046-0050.

7. Pearce R. E., Vakkalagadda G.R., Leeder J.S. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metabolism and Disposition. 2002; 30 (11): 1170-1179. DOI: 10.1124/dmd.30.11.1170.

8. Bielen I., Sruk A, Planjar-Prvan M., et al. Age-related pattern of the antiepileptic drug utilization in active epilepsy: a population-based survey. Coll Antropol. 2009; 33 (2): 659-663.

9. Albsoul-Younes A., Gharaibeh L., Murtaja A.A., et al. Patterns of antiepileptic drugs use in epileptic pediatric patients in Jordan. Neurosciences (Riyadh). 2016; 21 (3): 264-267. DOI: 10.17712/ nsj.2016.3.20150766.

10. Habib M., Khan S.U., Hoque A., et al. Antiepileptic drug utilization in Bangladesh: experience from Dhaka Medical College Hospital. BMC Res Notes. 2013; 6: 473. DOI: 10.1186/1756-0500-6-473.

11. Cohen S.A., Lawson J.A., Graudins L.V., et al. Changes in anticonvulsant prescribing for Australian children: implications for Quality Use of Medicines. J Paediatr Child Health. 2012; 48 (6): 490-495.

12. Landmark C. J., Fossmark H., Larsson P.G., et al. Prescription patterns of antiepileptic drugs in patients with epilepsy in a nation-wide population. Epilepsy Res. 2011; 95 (1-2): 51-59. DOI: 10.1016/j. eplepsyres.2011.02.012.

13. Kwong K. L., Tsui K.W., Wu S.P., et al. Utilization of antiepileptic drugs in Hong Kong children. Pediatr Neurol. 2012; 46 (5): 281-286. DOI: 10.1016/j.pediatrneurol.2012.02.019.

14. Djordjevic N., Jankovic S.M., Milovanovic J.R. Pharmacokinetics and pharmacogenetics of carbamazepine in children. European Journal of Drug Metabolism and Pharmacokinetics. 2017; 42 (5): 729–744. DOI: 10.1007/s13318-016-0397-3.

15. Bochanova E.N., Shnaider N.A., Zyryanov S.K., Dmitrenko D.V., Zhuravlev D.A., Nozdrachev K.G., Bogdanov V.V., Veselova O. F. Estimation of the consumption of antiepileptic drugs in outpatient practice. Klinicheskaya farmakologiya i terapiya (in Russ.). 2016; 25 (3): 90-92.

16. Bochanova E.N., Shnaider N.A., Zyryanov S.K., Gusev S.D., Nasyrova R. F. Personalized approach to increasing the safety of pharmacotherapy for epilepsy. Doktor.Ru. (in Russ.). 2018; 153 (9): 13-18. DOI: 10.31550/1727-2378-2018-153-9-13-18.

17. Bochanova E.N., Shnaider N.A., Dmitrenko D.V., Artyukhov I.P., Gusev S.D., Zyryanov S.K., Nasyrova R. F. Comparative assessment of the frequency of aggravation of epileptic seizures while taking antiepileptic drugs of various generations. Farmateka. (in Russ.). 2017; 9: 56-60.

18. Bochanova E.N., Shnaider N.A., Zyryanov S.K., Dmitrenko D.V., Shapovalova E.A., Veselova O. F., Shilkina O.S., Zhuravlev D.A. Age and gender aspects of unwanted adverse reactions in patients with epilepsy and epileptic syndromes (according to the register of the University Hospital). Farmateka (in Russ.). 2016; 20 (7): 71-75.

19. Shnaider N.A., Dmitrenko D.V., Pilyugina M.S. Pharmacogenetics of antiepileptic drugs. Byulleten’ sibirskoi meditsiny (in Russ.). 2008; 4: 111-119.

20. Bochanova E.N. Pharmacogenetics of antiepileptic drugs (literature review). Kachestvennaya klinicheskaya praktika (in Russ.). 2017; 1: 51-57.

21. Nasyrova R. F., Sivakova N.A., Lipatova L.V., Ivashchenko D.V., Sosina K.A., Drokov A.P., Shnaider N.A. Biological markers of the effectiveness and safety of antiepileptic drugs: pharmacogenetics and pharmacokinetics. Sibirskoe meditsinskoe obozrenie (in Russ.). 2017; 1: 17-25. DOI: 10.20333/2500136-2017-1-17-25.

22. Dokukina T.V., Gilep A.A., Startsev A. I., Golubeva T.S., Makhrov M.V., Gaidukevich I.V., Marchuk S.A., Sheremet E.A., Usova N.N., Korolevich P.P., Romenskii A.V., Khlebokazov F.P. Interpretation of the results of pharmacogenetic testing in patients with mental and behavioral disorders when prescribing psychotropic drugs: a training manual. Minsk. 2016; 54 s.

23. Ambrósio A. F., Soares-Da-Silva P., Carvalho C.M., Carvalho A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res. 2002; 27 (1-2): 121-30. DOI: 10.1023/a:1014814924965

24. Stahl S.M. Stahl’s essential psychopharmacology: Neuroscientific Basis and Practical Applications (3rdedn.) 2008. Cambrigde University Press, New York.

25. Sadock B. J., Sadock V.A., Ruiz P. Kaplan and Sadock’s comprehensive textbook of psychiatry (9thedn.) 2009. Lippincott Williams & Wilkins, Philadelphia.

26. Stahl S.M. Stahl’s essential psychopharmacology: Neuroscientific Basis and Practical Applications (3rdedn.) 2008. Cambrigde University Press, New York.

27. Ambrósio A. F., Soares-Da-Silva P., Carvalho C.M., Carvalho A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res. 2002; 27 (1-2): 121-30. DOI: 10.1023/a:1014814924965.

28. Sadock B. J., Sadock V.A., Ruiz P. Kaplan and Sadock’s comprehensive textbook of psychiatry (9thedn.) 2009. Lippincott Williams & Wilkins, Philadelphia.

29. Djordjevic N., Jankovic S.M., Milovanovic J.R. Pharmacokinetics and pharmacogenetics of carbamazepine in children. European Journal of Drug Metabolism and Pharmacokinetics. 2017; 42 (5): 729-744. DOI: 10.1007/s13318-016-0397-3.

30. Arvidsson J., Nilsson H. L., Sandstedt P., et al. Replacing carbamazepine slow-release tablets with carbamazepine suppositories: a pharmacokinetic and clinical study in children with epilepsy. J Child Neurol. 1995; 10 (2): 114-117. DOI: 10.1177/088307389501000209.

31. Miles M.V., Lawless S. T., Tennison M.B., et al. Rapid loading of critically ill patients with carbamazepine suspension. Pediatrics. 1990; 86 (2): 263-266.

32. Milovanovic J.R., Jankovic S.M. Factors influencing carbamazepine pharmacokinetics in children and adults: population pharmacokinetic analysis. Int J Clin Pharmacol Ther. 2011; 49 (7): 428-436. DOI: 10.5414/cp201517.

33. Carlsson K.C., Hoem N.O., Glauser T., Vinks A.A. Development of a population pharmacokinetic model for carbamazepine based on sparse therapeutic monitoring data from pediatric patients with epilepsy. Clin Ther. 2005; 27 (5): 618-626. DOI: 10.1016/j.clinthera.2005.05.001.

34. Summers B., Summers R.S. Carbamazepine clearance in paediatric epilepsy patients. Influence of body mass, dose, sex and comedication. Clin Pharmacokinet. 1989; 17 (3): 208-216.

35. Hartley R., Forsythe W. I., McLain B., et al. Daily variations in steadystate plasma concentrations of carbamazepine and its metabolites in epileptic children. Clin Pharmacokinet. 1991; 20 (3): 237-46.

36. Paxton J.W., Aman M.G., Werry J.S. Fluctuations in salivary carbamazepine and carbamazepine-10,11-epoxide concentrations during the day in epileptic children. Epilepsia. 1983; 24 (6): 716-724.

37. Emich-Widera E., Likus W., Kazek B., et al. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. Biomed Res Int. 2013; 2013: 526837. DOI: 10.1155/2013/526837.

38. Ufer M., von Stulpnagel C., Muhle H., et al. Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharmacogenet Genomics. 2011; 21 (10): 624-630. DOI: 10.1097/FPC.0b013e3283498131.

39. Pearce R. E., Lu W., Wang Y.Q., Uetrecht J.P., Correia M.A., Leeder J.S. Pathways of sarbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metabolism and Disposition. August 2008; 36 (8): 1637-1649. DOI: 10.1124/dmd.107.019562.

40. Kerr B.M., Thummel K.E., Wurden C.J., et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994; 47 (11): 1969-1979.

41. Pelkonen O., Myllynen P., Taavitsainen P., et al. Carbamazepine: a ‘blind’ assessment of CVP-associated metabolism and interactions in human liver-derived in vitro systems. Xenobiotica. 2001; 31 (6): 321-343. DOI: 10.1080/00498250110055479.

42. Kang P., Liao M., Wester M.R., et al. CYP3A4-Mediated carbamazepine (CBZ) metabolism: formation of a covalent CBZ-CYP3A4 adduct and alteration of the enzyme kinetic profile. Drug Metab Dispos. 2008; 36 (3): 490-499. DOI: 10.1124/dmd.107.016501.

43. Shakya G., Malla S., Shakya K.N., Shrestha R. Therapeutic drug monitoring of antiepileptic drugs. JNMA J Nepal Med Assoc. 2008; 47 (171): 94-7.

44. Dmitrenko D.V., Shnaider N.A., Bochanova E.N., Artyukhov I.P., Zyryanov S.K., Veselova O. F., Gusev S.D., Potupchik T.V. Therapeutic drug monitoring in the treatment of epilepsy. Vrach (in Russ). 2017; 1: 81-83.

45. Nasyrova R. F., Ivanov M.V., Neznanov N.G. Introduction to psychopharmacogenetics. SPb. 2015; 272 s. (in Russ).

46. Potschka H., Fedrowitz M., Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. NeuroReport. 2001; 12 (16): 3557-60. DOI: 10.1097/00001756-200111160-00037.

47. Aksenova M.G., Kachalin E. Yu., Burd S.G., Avakyan G.N., Badalyan O. L., Savenkov A.A., Tertyshnik O. Yu., Dorofeeva M. Yu., Belousova E.D., Gusev E. I. Relationship between the C3435 polymorphism of the MDR1 gene and the effectiveness of carbamazepines. Meditsinskaya genetika (in Russ). 2007; 6 (10): 39-41.

48. Emich-Widera E., Likus W., Kazek B., et al. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. Biomed Res Int. 2013; 2013: 526837. DOI: 10.1155/2013/526837.

49. Kim W. J., Lee J.H., Yi J., et al. A nonsynonymous variation in MRP2/ ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics. 2010; 20 (4): 249-256. DOI: 10.1097/FPC.0b013e328338073a.

50. Pelkonen O., Myllynen P., Taavitsainen P., et al. Carbamazepine: a ‘blind’ assessment of CVP-associated metabolism and interactions in human liver-derived in vitro systems. Xenobiotica. 2001; 31 (6): 321-343. DOI: 10.1080/00498250110055479.

51. Thorn C. F., Leckband S.G., Kelsoe J., et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics. 2011; 21 (12): 906-910. DOI: 10.1097/FPC.0b013e328348c6f2.

52. Djordjevic N., Jankovic S.M., Milovanovic J.R. Pharmacokinetics and pharmacogenetics of carbamazepine in children. European Journal of Drug Metabolism and Pharmacokinetics. 2017; 42 (5): 729-744. DOI: 10.1007/s13318-016-0397-3.

53. Sadee W. The relevance of “missing heritability“ in pharmacogenomics. Clin Pharmacol Ther. 2012; 92 (4): 428-430. DOI: 10.1038/clpt.2012.116.

54. Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138: 103-141. DOI: 10.1016/j.pharmthera.2012.12.007.

55. Maekawa K., Yoshimura T., Saito Y., Fujimura Y., Aohara F., Emoto C., Iwasaki K., Hanioka N., Narimatsu S., Niwa T., Sawada J. in Xenobiotica; the fate of foreign compounds in biological systems (2009) PMID: 19255940 (opens in new window) DOI: 10.1080/00498250802617746.

56. Maekawa Keiko, Harakawa Noriko, Yoshimura Takuya, Kim Su-Ryang, Fujimura Yoshiyuki, Aohara Fumika, Sai Kimie, Katori Noriko, Tohkin Masahiro, Naito Mikihiko, Hasegawa Ryuichi, Okuda Haruhiro, Sawada Jun-ichi, Niwa Takuro, Saito Yoshiro in Drug metabolism and disposition: the biological fate of chemicals. 2010; DOI: 10.1124/ dmd.110.034140

57. Hustert E., Haberl M., Burk O., et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001; 11: 773-779. DOI: 10.1038/86882.

58. Kuehl P., Zhang J., Lin Y., et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001; 27: 383-391. DOI: 10.1038/86882.

59. Saruwatari J., Yoshida S., Tsuda Y., et al. Pregnane X receptor and hepatocyte nuclear factor 4alpha polymorphisms are cooperatively associated with carbamazepine autoinduction. Pharmacogenet Genomics. 2014; 24 (3): 162-171. DOI: 10.1097/ FPC.0000000000000030.

60. Dragas Milovanovic D, Radosavljevic I, Radovanovic M, et al. CYP3A5 polymorphism in Serbian paediatric epileptic patients on carbamazepine treatment. SJECR. 2015; 16 (2): 93-99.

61. Pearce R. E., Vakkalagadda G.R., Leeder J.S. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos. 2002; 30 (11): 1170-1179. DOI: 10.1124/dmd.30.11.1170.

62. Gao Y., Liu D., Wang H., et al. Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions. Xenobiotica. 2010; 40 (7): 467-475. DOI: 10.3109/00498254.2010.487163.

63. Ferguson S.S., Chen Y., LeCluyse E.L., et al. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol. 2005; 68 (3): 747-757. DOI: 10.1124/mol.105.013169.

64. Dragas Milovanovic D., Milovanovic J.R., Radovanovic M., et al. The influence of CYP2C8*3 on carbamazepine serum concentration in epileptic pediatric patients. BJMG. 2016; 19 (1): 21-28. DOI: 10.1515/ bjmg-2016-0003.

65. Aklillu E., Carrillo J.A., Makonnen E., et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol. 2003; 64 (3): 659-669. DOI: 10.1124/mol.64.3.659.

66. Sim S.C., Risinger C., Dahl M. L., et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006; 79 (1): 103-113. DOI: 10.1016/j. clpt.2005.10.002.

67. Aklillu E., Carrillo J.A., Makonnen E., et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol. 2003; 64 (3): 659-669. DOI: 10.1124/mol.64.3.659.

68. Djordjevic N., Ghotbi R., Jankovic S., Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 −163C>A polymorphism. Eur J Clin Pharmacol. 2010; 66: 697-703. DOI: 10.1007/ s00228-010-0823-4.

69. PharmGKB. Carbamazepine Pathway, Pharmacokinetics ttps://www. pharmgkb.org/pathway/PA165817070 Accessed 28.07.2019

70. Shakya G., Malla S., Shakya K.N., Shrestha R. Therapeutic drug monitoring of antiepileptic drugs. JNMA J Nepal Med Assoc. 2008; 47 (171): 94-97.

71. Pirmohamed M., Friedmann P.S., Molokhia M., Loke Y.K., Smith C., Phillips E., La Grenade L., Carleton B., Papaluca-Amati M., Demoly P., Shear N.H. Phenotype standardization for immune-mediated drug-induced skin injury. Clin Pharmacol Ther. 2011; 89 (6): 896-901. DOI: 10.1038/clpt.2011.79.

72. Yip V. L., Marson A.G., Jorgensen A. L., Pirmohamed M., Alfirevic A. HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther. 2012; 92 (6): 757-765. DOI: 10.1038/clpt.2012.189.

73. Roujeau J.C., Stern R.S. Severe adverse cutaneous reactions to drugs. N Engl J Med. 1994; 331 (19): 1272-1285. DOI: 10.1056/ NEJM199411103311906.

74. Nassif A., Bensussan A., Boumsell L., Deniaud A., Moslehi H., Wolkenstein P., Bagot M., Roujeau J.C. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol. 2004; 114 (5): 1209-15. DOI: 10.1016/j.jaci.2004.07.047.

75. Naisbitt D. J., Britschgi M., Wong G., Farrell J., Depta J.P., Chadwick D.W., Pichler W. J., Pirmohamed M., Park B.K. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol. 2003; 63 (3): 732-741. DOI: 10.1124/mol.63.3.732.

76. Pichler W. J., Beeler A., Keller M., Lerch M., Posadas S., Schmid D., Spanou Z., Zawodniak A., Gerber B. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006; 55 (1): 17-25. DOI: 10.2332/allergolint.55.17.

77. Wei C.Y., Chung W.H., Huang H.W., Chen Y. T., Hung S. I. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012; 129 (6): 1562-9.e5. DOI: 10.1016/j.jaci.2011.12.990.

78. Bloch K.M., Sills G. J., Pirmohamed M., Alfirevic A. Pharmacogenetics of antiepileptic drug-induced hypersensitivity. Pharmacogenomics. 2014; 15 (6): 857-68. DOI: 10.2217/pgs.14.65.

79. Leckband S.G., Kelsoe J.R., Dunnenberger H.M., George A. L. Jr, Tran E., Berger R., Müller D. J., Whirl-Carrillo M., Caudle K. E., Pirmohamed M. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther. 2013; 94 (3): 324-8. DOI: 10.1038/clpt.2013.103.

80. Chung W.H., Hung S. I., Hong H.S., Hsih M.S., Yang L.C., Ho H.C., Wu J.Y., Chen Y. T. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004; 428 (6982): 486. DOI: 10.1038/428486a.

81. Man C.B., Kwan P., Baum L., Yu E., Lau K.M., Cheng A.S., Ng M.H. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia. 2007; 48 (5): 1015-1018. DOI: 10.1111/j.1528-1167.2007.01022.x.

82. Wu X. T., Hu F.Y., An D.M., Yan B., Jiang X., Kwan P., Stefan H., Zhou D. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B*1502 allele among patients in central China. Epilepsy Behav. 2010; 19 (3): 405-408. DOI: 10.1016/j. yebeh.2010.08.007.

83. Wang Q., Zhou J.Q., Zhou L.M., Chen Z.Y., Fang Z.Y., Chen S.D., Yang L.B., Cai X.D., Dai Q. L., Hong H., Wang H.X. Association between HLA-B*1502 allele and carbamazepine-induced severe cutaneous adverse reactions in Han people of southern China mainland. Seizure. 2011; 20 (6): 446-448. DOI: 10.1016/j.seizure.2011.02.003.

84. Shi Y.W., Min F. L., Qin B., Zou X., Liu X.R., Gao M.M., Wang Q., Zhou J.Q., Liao W.P. Association between HLA and Stevens-Johnson syndrome induced by carbamazepine in Southern Han Chinese: genetic markers besides B*1502? Basic Clin Pharmacol Toxicol. 2012; 111 (1): 58-64. DOI: 10.1111/j.1742-7843.2012.00868.x.

85. Amstutz U., Ross C. J., Castro-Pastrana L.I., Rieder M. J., Shear N.H., Hayden M.R., Carleton B.C. CPNDS Consortium. HLA-A 31:01 and HLA-B 15:02 as genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther. 2013; 94 (1): 142-149. DOI: 10.1038/ clpt.2013.55.

86. Tangamornsuksan W., Chaiyakunapruk N., Somkrua R., Lohitnavy M., Tassaneeyakul W. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013; 149 (9): 1025-1032. DOI: 10.1001/ jamadermatol.2013.4114.

87. Grover S., Kukreti R. HLA alleles and hypersensitivity to carbamazepine: an updated systematic review with meta-analysis. Pharmacogenet Genomics. 2014; 24 (2): 94-112. DOI: 10.1097/ FPC.0000000000000021.

88. Khor A.H., Lim K.S., Tan C. T., Wong S.M., Ng C.C. HLA-B*15:02 association with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in an Indian population: a pooled-data analysis and meta-analysis. Epilepsia. 2014; 55 (11): e120-4. DOI: 10.1111/epi.12802.

89. Chen P., Lin J. J., Lu C.S., Ong C. T., Hsieh P. F., Yang C.C., Tai C. T., Wu S. L., Lu C.H., Hsu Y.C., Yu H.Y., Ro L.S., Lu C. T., Chu C.C., Tsai J. J., Su Y.H., Lan S.H., Sung S. F., Lin S.Y., Chuang H.P., Huang L.C., Chen Y. J., Tsai P. J., Liao H. T., Lin Y.H., Chen C.H., Chung W.H., Hung S. I., Wu J.Y., Chang C. F., Chen L., Chen Y. T., Shen C.Y. Taiwan SJS Consortium. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011; 364 (12): 1126-1133. DOI: 10.1056/NEJMoa1009717.

90. Puangpetch A., Koomdee N., Chamnanphol M., Jantararoungtong T., Santon S., Prommas S., Hongkaew Y., Sukasem C. HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: evidence for high risk of drug-induced hypersensitivity. Front Genet. 2015; 5: 478. DOI: 10.3389/fgene.2014.00478.

91. Alfirevic A., Jorgensen A. L., Williamson P.R., Chadwick D.W., Park B.K., Pirmohamed M. HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics. 2006; 7 (6): 813-818. DOI: 10.2217/14622416.7.6.813.

92. Lonjou C., Borot N., Sekula P., Ledger N., Thomas L., Halevy S, Naldi L., Bouwes-Bavinck J.N., Sidoroff A., de Toma C., Schumacher M., Roujeau J.C., Hovnanian A., Mockenhaupt M. RegiSCAR study group. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008; 18 (2): 99-107. DOI: 10.1097/FPC.0b013e3282f3ef9c.

93. Chen Z., Liew D., Kwan P. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology. 2014; 83 (22): 2077-2084. DOI: 10.1212/WNL.0000000000001034.

94. Hung S. I., Chung W.H., Jee S.H., Chen W.C., Chang Y. T., Lee W.R., Hu S. L., Wu M.T, Chen GS, Wong TW, Hsiao PF, Chen WH, Shih HY, Fang WH, Wei CY, Lou YH, Huang Y.L, Lin J. J., Chen Y. T. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006; 16 (4): 297-306. DOI: 10.1097/01.fpc.0000199500.46842.4a.

95. Mizumoto K., Sumikawa Y., Niihara H., Morita E. Case of carbamazepine-induced hypersensitivity syndrome associated with human leukocyte antigen-A*3101. J Dermatol. 2012; 39 (9): 791-792. DOI: 10.1111/j.1346-8138.2011.01421.x.

96. Ozeki T., Mushiroda T., Yowang A., Takahashi A., Kubo M., Shirakata Y., Ikezawa Z., Iijima M., Shiohara T., Hashimoto K., Kamatani N., Nakamura Y. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011; 20 (5): 1034-1041. DOI: 10.1093/hmg/ddq537.

97. Niihara H., Kakamu T., Fujita Y., Kaneko S., Morita E. HLA-A31 strongly associates with carbamazepine-induced adverse drug reactions but not with carbamazepine-induced lymphocyte proliferation in a Japanese population. J Dermatol. 2012; 39 (7): 594-601. DOI: 10.1111/j.1346-8138.2011.01457.x.

98. Amstutz U., Ross C. J., Castro-Pastrana L.I., Rieder M. J., Shear N.H., Hayden M.R., Carleton B.C. CPNDS Consortium. HLA-A 31:01 and HLA-B 15:02 as genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther. 2013; 94 (1): 142-149. DOI: 10.1038/ clpt.2013.55.

99. McCormack M., Alfirevic A., Bourgeois S., Farrell J. J., Kasperavičiūtė D., Carrington M., Sills G. J., Marson T., Jia X., de Bakker P. I., Chinthapalli K., Molokhia M., Johnson M.R., O’Connor G.D., Chaila E., Alhusaini S., Shianna K.V., Radtke R.A., Heinzen E. L., Walley N., Pandolfo M., Pichler W., Park B.K., Depondt C., Sisodiya S.M., Goldstein D.B., Deloukas P., Delanty N., Cavalleri G. L., Pirmohamed M. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011; 364 (12): 1134-1143. DOI: 10.1056/NEJMoa1013297.

100. Genin E., Chen D.P., Hung S. I., Sekula P., Schumacher M., Chang P.Y., Tsai S.H., Wu T. L., Bellón T., Tamouza R., Fortier C., Toubert A., Charron D., Hovnanian A., Wolkenstein P., Chung W.H., Mockenhaupt M., Roujeau J.C. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J. 2014; 14 (3): 281-288. DOI: 10.1038/tpj.2013.40.

101. Kaniwa N., Saito Y., Aihara M., Matsunaga K., Tohkin M., Kurose K., Furuya H., Takahashi Y., Muramatsu M., Kinoshita S., Abe M., Ikeda H., Kashiwagi M., Song Y., Ueta M., Sotozono C., Ikezawa Z., Hasegawa R. JSAR research group. HLA-B*1511 is a risk factor for carbamazepineinduced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia. 2010; 51 (12): 2461-2465. DOI: 10.1111/j.1528-1167.2010.02766.x.

102. Kim S.H., Lee K.W., Song W. J., Kim S.H., Jee Y.K., Lee S.M., Kang H.R., Park H.W., Cho S.H., Park S.H., Min K.U., Chang Y.S. Adverse Drug Reaction Research Group in Korea. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res. 2011; 97 (1-2): 190-197. DOI: 10.1016/j.eplepsyres.2011.08.010.

103. Holland K.D., Kearney J.A., Glauser T.A., et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett. 2008; 433 (1): 65-70. DOI: 10.1016/j.neulet.2007.12.064.

104. Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. British Journal of Clinical Pharmacology. 2008; 66 (2): 304-307. DOI: 10.1111/j.1365-2125.2008.03203.x.

105. Daci A., Beretta G., Vilasaliu D., Shala A., Govori V., Norata G.D., Krasniqi S. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLOS. 2015; DOI: https://doi.org/10.1371/journal. pone.0142408.

106. Avakyan G.N., Burd S.G. Modern view on carbamazepine prolonged dosage forms usage in patients with epilepsy (literature review). Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions (in Russ). 2012; 4 (2): 67-71.

107. State Register of Medicines. URL: https://grls.rosminzdrav.ru. Accessed: 28.07.2019.


For citation:


Shnayder N.A., Bochanova E.N., Dmitrenko D.V., Nasyrova R.F. Pharmacogenetics of carbamazepine. Epilepsy and paroxysmal conditions. 2019;11(4):364-378. (In Russ.) https://doi.org/10.17749/2077-8333.2019.11.4.364-378

Views: 283


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)