Preview

Epilepsy and paroxysmal conditions

Advanced search

Prevalence of anticonvulsant-induced vitamin D deficiency

https://doi.org/10.17749/2077-8333/epi.par.con.2022.117

Abstract

Background. Epilepsy is a common disease in children and adults, requiring long-term or lifelong use of antiepileptic drugs (AEDs) in 60% of cases. Enzyme-inducing and enzyme-inhibiting AEDs may have a negative effect on vitamin D metabolism. However, at present, standard treatment protocols for patients with epilepsy include no nutrients and vitamin-mineral vitamin D containing complexes.

Objective: to analyze studies on the prevalence of vitamin D deficiency induced by AEDs intake in patients with epilepsy.

Material and methods. The search for full-text publications in Russian and English was carried out in еLibrary, PubMed/ MEDLINE, ClinicalKey, Google Scholar databases, covering the last five years. The analysis included 9 domestic and 54 foreign epidemiological studies assessing prevalence of AED-induced vitamin D deficiency and, consequently, altered bone mineralization and osteomalacia/osteoporosis.

Results. Both in children and adults, the prevalence of AED-induced vitamin D deficiency reaches 40% and even higher. The region of residence of patients with epilepsy does not significantly affect this indicator. Impaired bone mineralization is associated with AED-induced vitamin D deficiency and requires the inclusion of vitamin D in the protocols of disease-modifying epilepsy therapy in children and adults.

Conclusion. The results of the review showed high relevance of the discussed interdisciplinary problem and need to introduce laboratory screening of vitamin D deficiency among pediatric and adult patients with epilepsy.

About the Authors

E. A. Dontseva
Novosibirsk State Medical University
Russian Federation

Evgenia A. Dontseva – Assistant Professor, Chair of Clinical Neurology and Neurogeriatrics, Faculty of Advanced Training and
Professional Retraining of Doctors

 52 Krasnyy Ave., Novosibirsk 630091



P. I. Pilipenko
Novosibirsk State Medical University
Russian Federation

Pavel I. Pilipenko – Dr. Med. Sc., Professor, Chief of Chair of Clinical Neurology and Neurogeriatrics, Faculty of Advanced Training
and Professional Retraining of Doctors 

 52 Krasnyy Ave., Novosibirsk 630091



N. A. Shnayder
Bekhterev National Medical Research Centre for Psychiatry and Neurology; Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia A. Shnayder – Dr. Med. Sc., Professor, Leading Researcher, Department of Personalized Psychiatry and Neurology; Leading Researcher, Center of Collective Usage “Molecular and Cellular Technologies”

WoS ResearcherID: M-7084-2014; RSCI SPIN-code: 1952-3043

3 Bekhterev Str., Saint Petersburg 192019; 1 Partizan Zheleznyak Str., Krasnoyarsk 660022



M. M. Petrova
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Marina M. Petrova – Dr. Med. Sc., Professor, Chief of Chair of Polyclinic Therapy and Family Medicine with a Postgraduate
Education Course

WoS ResearcherID: L-5623-2014; Scopus Author ID: 23987271200; RSCI SPIN-code: 3531-2179

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



R. F. Nasyrova
Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Regina F. Nasyrova – Dr. Med. Sc., Senior Researcher

RSCI SPIN-code: 3799-0099

3 Bekhterev Str., Saint Petersburg 192019



References

1. Shnayder N.A., Dontseva E.A., Nasyrova R.F. Vitamin D and Alzheimer's disease. Vestnik Smolenskoy gosudarstvennoy akademii / Bulletin of the Smolensk State Medical Academy. 2021; 20 (2): 66–76 (in Russ.). https://doi.org/10.37903/vsgma.2021.2.9.

2. Morris H.A., Anderson P.H. Autocrine and paracrine actions of vitamin D. Clin Biochem Rev. 2010; 31 (4): 129–38.

3. Povoroznyuk V.V., Reznichenko N.A., Maylyan E.A. Extra-skeletal effects of vitamin D. Pain. Joints. Spine. 2014; 1 (2): 19–25 (in Russ.).

4. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrin Metab. 2011; 96 (7): 1911–30. https://doi.org/10.1210/jc.2011-0385.

5. Pannu P.K., Calton E.K., Soares M.J. Calcium and vitamin D in obesity and related chronic disease. Adv Food Nutr Res. 2016; 77: 57–100. https://doi.org/10.1016/bs.afnr.2015.11.001.

6. Williams C., Netzloff M., Folkerts L., et al. Vitamin D metabolism and anticonvulsant therapy: effect of sunshine on incidence of osteomalacia. South Med J. 1984; 77 (7): 834–6, 842. https://doi.org/10.1097/00007611-198407000-00011.

7. Robien K., Oppeneer S.J., Kelly J.A., Hamilton-Reeves J.M. Drugvitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013; 28 (2): 194–208. https://doi. org/10.1177/0884533612467824.

8. Khalifah R.A., Hudairi A., Homyani D.A., et al. Vitamin D supplementation to prevent vitamin D deficiency for children with epilepsy: randomized pragmatic trial protocol. Medicine (Baltimore). 2018; 97 (40): 12734. https://doi.org/10.1097/MD.0000000000012734.

9. Stephen L.J., Harden C., Tomson T., Brodie M.J. Management of epilepsy in women. Lancet Neurol. 2019; 18 (5): 481–91. https://doi. org/10.1016/S1474-4422(18)30495-2.

10. Holló A., Clemens Z., Lakatos P. Epilepsy and vitamin D. Int J Psychol Neurosci. 2014; 124 (6): 387–93. https://doi.org/10.3109/00207454.20 13.847836.

11. Tombini M., Palermo A., Assenza G., et al. Calcium metabolism serum markers in adult patients with epilepsy and the effect of vitamin D supplementation on seizure control. Seizure. 2018; 58: 75–81. https://doi.org/10.1016/j.seizure.2018.04.008.

12. Dussault P.M., Lazzari A.A. Epilepsy and osteoporosis risk. Curr Opin Endocrinol Diabetes Obes. 2017; 24 (6): 395–401. https://doi.org/10.1097/MED.0000000000000366.

13. Diemar S.S., Sejling A.S., Eiken P., et al. An explorative literature review of the multifactorial causes of osteoporosis in epilepsy. Epilepsy Behav. 2019; 100 (Pt. A): 106511. https://doi.org/10.1016/j. yebeh.2019.106511.

14. Parveen B., Tripathi M., Vohora D. A cross-sectional study to assess the modulation of Wnt inhibitors following anti-epileptic drug therapy and their correlation with vitamin D and receptor activator of nuclear factor κB ligand in Indian women with epilepsy. Basic Clin Pharmacol Toxicol. 2018; 123 (3): 271–6. https://doi.org/10.1111/bcpt.12996.

15. Teagarden D.L., Meador K.J., Loring D.W. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res. 2014; 108 (8): 1352–6. https://doi.org/10.1016/j.eplepsyres.2014.06.008.

16. Lee Y.J., Park K.M., Kim Y.M., et al. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatr Neurol. 2015; 52 (2): 153–9. https://doi. org/10.1016/j.pediatrneurol.2014.10.008.

17. Fong C.Y., Riney C.J. Vitamin D deficiency among children with epilepsy in South Queensland. J Child Neurol. 2014; 29 (3): 368–73. https://doi.org/10.1177/0883073812472256.

18. Fong C.Y., Kong A.N., Poh B.K., et al. Vitamin D deficiency and its risk factors in Malaysian children with epilepsy. Epilepsia. 2016; 57 (8): 1271–9. https://doi.org/10.1111/epi.13443epilepsy.

19. Xu Z., Jing X., Li G., et al. Valproate decreases vitamin D levels in pediatric patients with epilepsy. Seizure. 2019; 71: 60–5. https://doi.org/10.1016/j.seizure.2019.06.009.

20. Yildiz E.P., Poyrazoglu Ş., Bektas G., et al. Potential risk factors for vitamin D levels in medium- and long-term use of antiepileptic drugs in childhood. Acta Neurol Belg. 2017; 117 (2): 447–53. https://doi.org/10.1007/s13760-017-0775-x.

21. Sreedharan M., Devadathan K., Mohammed Kunju P.A., et al. Vitamin D deficiency in ambulant children on carbamazepine or sodium valproate monotherapy. Indian Pediatr. 2018; 55 (4): 307–10.

22. Durá-Travé T., Gallinas-Victoriano F., Malumbres-Chacón M., et al. Vitamin D deficiency in children with epilepsy taking valproate and levetiracetam as monotherapy. Epilepsy Res. 2018; 139: 80–4. https://doi.org/10.1016/j.eplepsyres.2017.11.013.

23. Attilakos A., Tsirouda M., Dinopoulos A., et al. Vitamin D status in children with epilepsy treated with levetiracetam monotherapy. Epilepsy Res. 2018; 148: 116. https://doi.org/10.1016/j. eplepsyres.2018.09.003.

24. Zhang J., Wang K.X., Wei Y., et al. Effect of topiramate and carbamazepine on bone metabolism in children with epilepsy. Zhongguo Dang Dai Er Ke Za Zhi. 2010; 12 (2): 96–8 (in Chinese).

25. Rowan A.J., Ramsay R.E., Collins J.F., et al. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology. 2005; 64 (11): 1868–73. https://doi.org/10.1212/01.WNL.0000167384.68207.3E.

26. Mattson R.H., Gidal B.E. Fractures, epilepsy, and antiepileptic drugs. Epilepsy Behav. 2004; 5 (2): 36–40. https://doi.org/10.1016/j. yebeh.2003.11.030.

27. Vestergaard P., Tigaran S., Rejnmark L., et al. Fracture risk is increased in epilepsy. Acta Neurol Scand. 1999; 99 (5): 269–75. https://doi.org/10.1111/j.1600-0404.1999.tb00675.x.

28. Espallargues M., Sampietro-Colom L., Estrada M.D., et al. Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporos Int. 2001; 12 (10): 811–22. https://doi.org/10.1007/s001980170031.

29. Meier C., Kraenzlin M.E. Antiepileptics and bone health. Ther Adv Musculoskelet Dis. 2011; 3 (5): 235–43. https://doi. org/10.1177/1759720X11410769.

30. Koppel B.S., Harden C.L., Nikolov B.G., Labar D.R. An analysis of lifetime fractures in women with epilepsy. Acta Neurol Scand. 2005; 111 (4): 225–8. https://doi.org/10.1111/j.1600-0404.2005.00399.x.

31. Arora E., Singh H., Gupta Y.K. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Family Med Prim Care. 2016; 5 (2): 248–53. https://doi. org/10.4103/2249-4863.192338.

32. Cansu A., Yesilkaya E., Serdaroğlu A., et al. Evaluation of bone turnover in epileptic children using oxcarbazepine. J Pediatr Neurol. 2008; 39 (4): 266–71. https://doi.org/10.1016/j.pediatrneurol.2008.07.001.

33. Vestergaard P., Rejnmark L., Mosekilde L. Fracture risk associated with use of antiepileptic drugs. Epilepsia. 2004; 45 (11): 1330–7. https://doi.org/10.1111/j.0013-9580.2004.18804.x.

34. Nicholas J.M., Ridsdale L., Richardson M.P., et al. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: cohort study using the general practice research database. Seizure. 2013; 22 (1): 37–42. https://doi.org/10.1016/j. seizure.2012.10.002.

35. Fan H.C., Wang S.Y., Peng Y.J., Lee H.S. Valproic acid impacts the growth of growth plate chondrocytes. Int J Environ Res Public Health. 2020; 17 (10): 3675. https://doi.org/10.3390/ijerph17103675.

36. Nagarjunakonda S., Amalakanti S., Uppala V., et al. Vitamin D in epilepsy: vitamin D levels in epilepsy patients, patients on antiepileptic drug polytherapy and drug-resistant epilepsy sufferers. Eur J Clin Nutr. 2016; 70 (1): 140–2. https://doi.org/10.1038/ejcn.2015.127.

37. Verrotti A., Coppola G., Parisi P., et al. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010; 112 (1): 1–10. https://doi.org/10.1016/j.clineuro.2009.10.011.

38. Heo K., Rhee Y., Lee H.W., et al. The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia. 2011; 52 (10): 1884–9. https://doi.org/10.1111/j.1528-1167.2011.03131.x.

39. Chandrasekaran V., Pasco J.A., Stuart A.L., et al. Anticonvulsant use and bone health in a population-based study of men and women: cross-sectional data from the Geelong Osteoporosis Study. BMC Musculoskelet Disord. 2021; 22 (1): 172. https://doi.org/10.1186/ s12891-021-04042-w.

40. Valsamis H.A., Arora S.K., Labban B., et al. Antiepileptic drugs and bone metabolism. Nutr Metab. 2006; 3: 36. https://doi. org/0.1186/1743-7075-3-36.

41. Ensrud K.E., Walczak T.S., Blackwell T., et al. Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology. 2004; 62 (11): 2051–7. https://doi.org/10.1212/01. wnl.0000125185.74276.d2.

42. Pigarova E.A., Rozhinskaya L.Y., Belaya J.E., et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016; 62 (4): 60–84 (in Russ.). https://doi. org/10.14341/probl201662460-84.

43. Andress D.L, Ozuna J., Tirschwell D., et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002; 59 (5): 781–6. https://doi.org/10.1001/ archneur.59.5.781.

44. Christakos S., Dhawan P., Verstuyf A., et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016; 96 (1): 365–408. https://doi.org/10.1152/physrev.00014.2015.

45. Saponaro F., Saba A., Zucchi R. An update on Vitamin D metabolism. Int J Mol Sci. 2020; 21 (18): 6573. https://doi.org/10.3390/ijms21186573.

46. Wang P., Qin X., Liu M., Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res. 2018; 133: 9–20. https://doi.org/10.1016/j. phrs.2018.04.022.

47. Maksymchuk O.V., Kashuba V.I. Altered expression of cytochrome P450 enzymes involved in metabolism of androgens and vitamin D in the prostate as a risk factor for prostate cancer. Pharmacol Rep. 2020; 72 (5): 1161–72. https://doi.org/10.1007/s43440-020-00133-y.

48. Qiu J., Guo H., Li L., et al. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy – a pilot longitudinal study. J Biomed Res. 2020; 35 (1): 61–7. https://doi.org/10.7555/JBR.34.20200057.

49. Lee R., Lyles K., Sloane R., et al. The association of newer anticonvulsant medications and bone mineral density. Endocr Pract. 2012; 14: 1–22. https://doi.org/10.4158/EP12119.OR.

50. Boluk A., Guzelipek M., Savli H., et al. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004; 50 (1): 93–7. https://doi.org/10.1016/j.phrs.2003.11.011.

51. Fan H.C., Lee H.S., Chang K.P., et al. The impact of anti-epileptic drugs on growth and bone metabolism. Int J Mol Sci. 2016; 17 (8): 1242. https://doi.org/10.3390/ijms17081242.

52. Lee R.H., Lyles K.W., Colón-Emeric C.A. Review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010; 8 (1): 34–46. https://doi. org/10.1016/j.amjopharm.2010.02.003.

53. Thomas M.K., Lloyd-Jones D.M., Thadhani R.I., et al. Hypovitaminosis D in medical inpatients. New Engl J Med. 1998; 338 (12): 777–83. https://doi.org/10.1056/NEJM199803193381201.

54. Pack A.M., Gidal B., Vazquez B. Bone disease associated with antiepileptic drugs. Cleve Clin J Med. 2004; 71 (Suppl. 2): S42–8. https://doi.org/10.3949/ccjm.71.suppl_2.s42.

55. Zhong R., Chen Q., Zhang X., et al. Bone mineral density loss in people with epilepsy taking valproate as a monotherapy: a systematic review and meta-analysis. Front Neurol. 2019; 10: 1171. https://doi. org/10.3389/fneur.2019.01171.

56. Suljic E.M., Mehicevic A., Mahmutbegovic N. Effect of long-term carbamazepine therapy on bone health. Med Arch. 2018; 72 (4): 262–6. https://doi.org//10.5455/medarh.2018.72.262-266.


Review

For citations:


Dontseva E.A., Pilipenko P.I., Shnayder N.A., Petrova M.M., Nasyrova R.F. Prevalence of anticonvulsant-induced vitamin D deficiency. Epilepsy and paroxysmal conditions. 2022;14(3):304-315. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2022.117

Views: 3423


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)