Post-traumatic epilepsy in children: developmental predictors and treatment strategy
https://doi.org/10.17749/2077-8333/epi.par.con.2025.236
Abstract
Background. Post-traumatic epilepsy (PTE) in children is a significant medical and social problem affecting the quality of patients’ life. The periods of early and late convulsive seizures (CS) with a distinct pathophysiological basis are distinguished in the development of the disease. Pharmacoresistance formed due to structurally determined epileptogenic zones in PTE creates prerequisites for increasing the frequency of surgical interventions as the only effective treatment method to achieve seizure freedom.
Objective: To analyze literature data on predictors of PTE development in children, efficacy of conservative and surgical treatment. Material and methods. In accordance with the PRISMA approach, 29 foreign and Russian publications found in PubMed/ MEDLINE and eLibrary databases and published between 2014 and 2024 were selected for the review, including 7 systematic reviews and meta-analyses. The selection criterion was the relevance of the publication topic to the search query “posttraumatic epilepsy in children”.
Results. According to current concepts, there are four research areas assessing potential risks of PTE development in moderate and severe traumatic brain injury among children: biomarkers, genetic predisposition, neuroimaging and neurophysiological predictors. No justified therapeutic option for preventing early СS is available, while some studies have reported the efficacy of prophylactically used antiepileptic drugs to control incidence of late CS in the pediatric PTE population. PTE as a structural form of epilepsy has a high potential for the use of surgical therapies to achieve seizure freedom.
Conclusion. The data analysis demonstrates the expansion of the clinical diagnostic approach in identifying risk factors for PTE in children, as well as shapes the understanding of the feasibility and efficacy of conservative and surgical treatments.
About the Authors
D. S. KanshinaRussian Federation
Daria S. Kanshina, PhD
Scopus Author ID: 57221390389
22 Bolshaya Polyanka Str., Moscow 119180
T. A. Akhadov
Russian Federation
Tolibdzhon A. Akhadov, Dr. Sci. Med., Prof.
22 Bolshaya Polyanka Str., Moscow 119180
I. A. Mel'nikov
Russian Federation
Ilia A. Mel'nikov, PhD
22 Bolshaya Polyanka Str., Moscow 119180
G. A. Manushakyan
Russian Federation
Grigory A. Manushakyan
2 Poltavskaya Str., Moscow 127220
V. P. Zykov
Russian Federation
Valeriy P. Zykov, Dr. Med. Sci., Prof.
2/1 bldg 1, Barrikadnaya Str., Moscow 125993
References
1. Fisher R., Cross H., French J., et al. An overview of the 2017 ILAE operational classification of seizure types. Epilepsy. 2017; 58 (4): 522–30. https://doi.org/10.1111/epi.13670.
2. Fisher R., Emde Boas W., Blume W., et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).Epilepsia. 2005; 46 (4): 470–2. https://doi.org/10.1111/j.0013-9580.2005.66104.x.
3. Kriukova K.K., Aleksandrova E.V., Voskresenskaya O.N., et al. Early predictive biomarkers of posttraumatic epilepsy. Burdenko's Journal of Neurosurgery. 2021; 85 (5): 110–5 (in Russ.). https://doi.org/10.17116/neiro202185051110.
4. Englander J., Bushnik T., Duong T., et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003; 84 (3): 365–73. https://doi.org/10.1053/apmr.2003.50022.
5. Mazzini L., Cossa F.M., Angelino E., et al. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia. 2003; 44 (4): 569–74. https://doi.org/10.1046/j.1528-1157.2003.34902.x.
6. Mariajoseph F., Chen Z., Sekhar P., et al. Incidence and risk factors of posttraumatic epilepsy following pediatric traumatic brain injury: a systematic review and meta-analysis. Epilepsia. 2022; 63 (11): 2802–12. https://doi.org/10.1111/epi.173982022.
7. Potts M., Koh S.E., Whetstone W., et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006; 3 (2): 143–53. https://doi.org/10.1016/j.nurx.2006.01.006.
8. Sharma S., Tiarks G., Haight J., et al. Neuropathophysiological mechanisms and treatment strategies for post-traumatic epilepsy. Front Mol Neurosci. 2021: 14: 612073. https://doi.org/10.3389/fnmol.2021.612073.
9. Semple B., O'Brien T., Gimlin K., et al. Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci. 2017; 37 (33): 7864–77. https://doi.org/10.1523/JNEUROSCI.0982-17.2017.
10. Jennett B. Epilepsy after non-missile head injuries. Scott Med J. 1973; 18 (1): 8–13. https://doi.org/10.1177/003693307301800103.
11. Annegers J., Coan S. The risks of epilepsy after traumatic brain injury. Seizure. 2000; 9 (7): 453–7. https://doi.org/10.1053/seiz.2000.0458.
12. Bruckhaus А., Asifriyaz T., Kriukova K., et al. Exploring multimodal biomarker candidates of post-traumatic epilepsy following moderate to severe traumatic brain injury: a systematic review and meta-analysis. Epilepsia. 2025; 66 (1): 6–32. https://doi.org/10.1111/epi.18131.
13. Diamond M., Ritter A., Failla M., et al. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia. 2014; 55 (7): 1109–19. https://doi.org/10.1111/epi.12628.
14. Darrah S., Miller M., Ren D., et al. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res. 2013; 103 (2–3): 180–94. https://doi.org/10.1016/j.eplepsyres.2012.07.006.
15. Diamond M., Ritter A., Jackson E., et al. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia. 2015; 56 (8): 1198–206. https://doi.org/10.1111/epi.13044.
16. Andrade P., Pitkänen A. O212 Shortening of the duration of sleep spindles; a diagnostic biomarker for post-traumatic epilepsy. Clin Neurophysiol. 2017; 128 (9): e246. https://doi.org/10.1016/j.clinph.2017.07.220.
17. Waziri A., Claassen J., Stuart R., et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009; 66 (3): 366–77. https://doi.org/10.1002/ana.21721.
18. Temkin N. Preventing and treating posttraumatic seizures: the human experience. Epilepsia. 2009; 50 (Suppl. 2): 10–3. https://doi.org/10.1111/j.1528-1167.2008.02005.x.
19. Slemmer J., Shacka J., Sweeney M., Weber J.T. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem. 2008; 15 (4): 404–14. https://doi.org/10.2174/092986708783497337.
20. Thompson K., Pohlmann-Eden B., Campbell L., Abel H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev. 2015; 2015 (8): CD009900. https://doi.org/10.1002/14651858.CD009900.pub2.
21. Young K., Okada P., Sokolove P., et al. A randomized, doubleblinded, placebocontrolled trial of phenytoin for the prevention of earlyposttraumatic seizures in children with moderate to severe blunt head injury. Ann Emerg Med. 2004; 43 (4): 435–46. https://doi.org/10.1016/j.annemergmed.2003.09.016.
22. Samara Q., Ifraitekh A., Jayyousi O., et al. Use of antiepileptic drugs as prophylaxis against posttraumatic seizures in the pediatric population: a systematic review and meta-analysis. Neurosurg Rev. 2023; 46 (1): 49. https://doi.org/10.1007/s10143-023-01963-z.
23. Karamian A., Farzaneh H., Taheri M., Seifi A. Effectiveness of levetiracetam versus phenytoin in preventing seizure in traumatic brain injury patients: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2024: 240: 108251. https://doi.org/10.1016/j.clineuro.2024.108251.
24. Wang X., Han P., Wang Q., et al. Efficiency of surgery on posttraumatic epilepsy: a systematic review and meta-analysis. Neurosurg Rev. 2023; 46 (1): 91. https://doi.org/10.1007/s10143-023-01997-3.
25. Kaulfers A., Backeljauw P., Reifschneider K., et al. Endocrine dysfunction following traumatic brain injury in children. J Pediatr. 2010; 157 (6): 894–9. https://doi.org/10.1016/j.jpeds.2010.07.004.
26. Reifschneider K., Auble B., Rose S. Update of endocrine dysfunction following pediatric traumatic brain injury. J Clin Med. 2015; 4 (8): 1536–60. https://doi.org/10.3390/jcm4081536.
27. Rose S.R., Auble B.A. Endocrine changes after pediatric traumatic brain injury. Pituitary. 2012; 15 (3): 267–75. https://doi.org/10.1007/s11102-011-0360-x.
28. Mariajoseph F., Chen Z., Sekhar P., et al. Incidence and risk factors of posttraumatic epilepsy following pediatric traumatic brain injury: a systematic review and meta-analysis. Epilepsia. 2022; 63 (11): 2802–12. https://doi.org/10.1111/epi.17398.
29. Vlad R., Albu A., Nicolaescu I., et al. An approach to traumatic brain injury-related hypopituitarism: overcoming the pediatric challenges. Diagnostics. 2023; 13 (2): 212. https://doi.org/10.3390/diagnostics13020212.
Review
For citations:
Kanshina D.S., Akhadov T.A., Mel'nikov I.A., Manushakyan G.A., Zykov V.P. Post-traumatic epilepsy in children: developmental predictors and treatment strategy. Epilepsy and paroxysmal conditions. 2025;17(2):227-233. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2025.236

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.