Preview

Epilepsy and paroxysmal conditions

Advanced search

Autoimmune epilepsy

https://doi.org/10.17749/2077-8333/epi.par.con.2022.108

Abstract

Investigation of autoimmune epilepsy (AIE) has been attracting increasingly more attention due to discovery of neuronal antibodies and improved understanding of the mechanisms related to such immune-mediated syndromes. The review is aimed at autoimmune epilepsy taking into account up-to-date advances  in exploring its pathophysiology. Definitions related to this issue are outlined, and pathogenetic mechanisms, features of antineuronal antibodies as well as AIE clinical picture based on type of autoantibodies, are considered. The necessity of regular monitoring patients with AIE is indicated, preferably by an epileptologist  together  with a neuroimmunologist.  With prolonged  follow-up,  chronic  pharmacoresistant  epilepsy persists in some  patients, despite aggressive immunotherapy and antiepileptic drugs. With a deeper understanding of the mechanisms of antibody-mediated and autoantigen-specific T-cell-mediated AIE syndromes, the use of antiepileptic drugs and immunotherapy can be further optimized.

About the Authors

О. S. Shilkina
Neurological Center of Epileptology, Neurogenetics and Brain Research
Russian Federation

Olga S. Shilkina – MD, PhD, Neurologist,  Neurological  Center of Epileptology, Neurogenetics and Brain Research,  University Clinic, Voino-Yasenetsky  Krasnoyarsk State Medical  University.

124 Karl Marx Str., Krasnoyarsk 660021.

RSCI SPIN-code: 1150-7413



E. A. Kantimirova
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Elena A. Kantimirova – MD, PhD, Associate  Professor,  Chair  of Medical Genetics and Clinical Neurophysiology, Institute of Professional Education, Voino-Yasenetsky Krasnoyarsk State Medical University.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022.

WoS ResearcherID: AAJ-2986-2020

RSCI SPIN-code: 9429-2288



A. A. Usoltseva
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Anna A. Usoltseva – Postgraduate,  Chair of Medical Genetics and Clinical Neurophysiology,  Institute of Professional Education, Voino-Yasenetsky Krasnoyarsk State Medical University.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022.

Scopus Author ID: 57210425243

WoS ResearcherID: AAM-9334-2021

RSCI SPIN-code: 9163-0862



Т. I. Prusova
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Tatiana  I. Prusova – Student, Voino-Yasenetsky Krasnoyarsk State Medical University.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022.



D. V. Dmitrenko
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Diana V. Dmitrenko – Dr. Med.  Sc., Chief of Chair of Medical Genetics and Clinical Neurophysiology, Institute of Professional Education, Voino-Yasenetsky Krasnoyarsk State Medical University.

1 Partizan Zheleznyak Str., Krasnoyarsk 660022.

WoS ResearcherID: H-7787-2016

RSCI SPIN-code: 9180-6623



References

1. Scheffer I.E., Berkovic S., Capovilla G., et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 (4): 512–21. https://doi.org/10.1111/epi.13709.

2. Dubey D., Pittock S.J., McKeon A. Antibody prevalence in epilepsy and encephalopathy score: increased specificity and applicability. Epilepsia. 2019; 60 (2): 367–9. https://doi.org/10.1111/epi.14649.

3. Dubey D., Alqallaf A, Hays R., et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol. 2017; 74 (4): 397–402. https://doi.org/10.1001/jamaneurol.2016.5429.

4. Larman H.B., Zhao Z., Laserson U., et al. Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol. 2011; 29 (6): 535–41. https://doi.org/10.1038/nbt.1856.

5. Scharf M., Miske R., Kade S., et al. A spectrum of neural autoantigens, newly identified by histo-immunoprecipitation, mass spectrometry, and recombinant cell-based indirect immunofluorescence. Front Immunol. 2018; 9: 1447. https://doi.org/10.3389/fimmu.2018.01447.

6. Dalmau J., Gross F. Antibody-mediated encephalitis. New Engl J Med. 2018; 378 (9): 840–51. https://doi.org/10.1056/NEJMra1708712.

7. Pizzanelli C., Milano C., Canovetti S., et al. Autoimmune limbic encephalitis related to SARS-CoV-2 infection: case-report and review of the literature. Brain Behav Immun Health. 2021; 12 :100210. https://doi.org/10.1016/j.bbih.2021.100210.

8. Chiveri L., Verrengia E., Muscia F., et al. Limbic encephalitis in a COVID-19 patient? J Neurovirol. 2021; 27 (3): 498–500. https://doi.org/10.1007/s13365-021-00971-3.

9. Bhagat R., Kwiecinska B., Smith N., et al. New-onset seizure with possible limbic encephalitis in a patient with COVID-19 infection: a case report and review. J Investig Med High Impact Case Rep. 2021; 9: 2324709620986302. https://doi.org/10.1177/2324709620986302.

10. Zambreanu L., Lightbody S., Bhandari M., et al. A case of limbic encephalitis associated with asymptomatic COVID-19 infection. J Neurol Neurosurg Psychiatry. 2020; 91 (11): 1229–30. https://doi.org/10.1136/jnnp-2020-323839.

11. Husari K.S., Dubey D. Autoimmune epilepsy. Neurotherapeutics. 2019; 16 (3): 685–702. https://doi.org/10.1007/s13311-019-00750-3.

12. Abramovici S., Bagic A. Epidemiology of epilepsy. Handb Clin Neurol. 2016; 138: 159–71. https://doi.org/10.1016/B978-0-12-802973-2.00010-0.

13. Brenner T., Sills G.J., Hart Y., et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia. 2013; 54 (6): 1028–35. https://doi.org/10.1111/epi.12127.

14. Dubey D., Pittock S.J., Kelly C.R., et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018; 83 (1): 166–77. https://doi.org/10.1002/ana.25131.

15. Wright S., Geerts A.T., Jol-van der Zijde C.M., et al. Neuronal antibodies in pediatric epilepsy: clinical features and long-term outcomes of a historical cohort not treated with immunotherapy. Epilepsia. 2016; 57 (5): 823–31. https://doi.org/10.1111/epi.13356.

16. Suleiman J., Wright S., Gill D., et al. Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies. Epilepsia. 2013; 54 (12): 2091–100. https://doi.org/10.1111/epi.12405.

17. Bauer J., Becker A.J., Elyaman W., et al. Innate and adaptive immunity in human epilepsies. Epilepsia. 2017; 58 (3): 57–68. https://doi.org/10.1111/epi.13784.

18. Sarapulova A.A., Ayvasyan S.O., Osipova K.V. Autoimmune encephalopathies. Describing two clinical cases. Quantum Satis. 2017; 1 (2): 72–83 (in Russ.).

19. Toledano M., Pittock S.J. Autoimmune epilepsy. Semin Neurol. 2015; 35 (3): 245–58. https://doi.org/10.1055/s-0035-1552625.

20. Fujinami R.S., von Herrath M.G., Christen U., et al. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006; 19 (1): 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006.

21. Armangue T., Spatola M., Vlagea A., et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018; 17 (9): 760–72. https://doi.org/10.1016/S1474-4422(18)30244-8.

22. Lancaster E., Dalmau J. Neuronal autoantigens – pathogenesis, associated disorders and antibody testing. Nat Rev Neurol. 2012; 8 (7): 380–90. https://doi.org/10.1038/nrneurol.2012.99.

23. Albert M.L., Darnell J.C., Bender A., et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med. 1998; 4 (11): 1321–4. https://doi.org/10.1038/3315.

24. Ohkawa T., Fukata Y., Yamasaki M., et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci. 2013; 33 (46): 18161–74. https://doi.org/10.1523/JNEUROSCI.3506-13.2013.

25. Ayşit-Altuncu N., Ulusoy C., Öztürk G., Tüzün E. Effect of LGI1 antibody-positive IgG on hippocampal neuron survival: a preliminary study. Neuroreport. 2018; 29 (11): 932–8. https://doi.org/10.1097/WNR.0000000000001055.

26. Hughes E.G., Peng X., Gleichman A.J., et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010; 30 (17): 5866–75. https://doi.org/10.1523/JNEUROSCI.0167-10.2010.

27. Gresa-Arribas N., Titulaer M.J., Torrents A., et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014; 13 (2): 167–77. https://doi.org/10.1016/S1474-4422(13)70282-5.

28. Wesselingh R., Butzkueven H., Buzzard K., et al. Seizures in autoimmune encephalitis: kindling the fire. Epilepsia. 2020; 61 (6): 1033–44. https://doi.org/10.1111/epi.16515.

29. Steriade C., Britton J., Dale R.C., et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia. 2020; 61 (7): 1341–51. https://doi.org/10.1111/epi.16571.

30. Peltola J., Kulmala P., Isojärvi J., et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology. 2000; 55 (1): 46–50. https://doi.org/10.1212/wnl.55.1.46.

31. Lilleker J.B., Biswas V., Mohanraj R. Glutamic acid decarboxylase (GAD) antibodies in epilepsy: diagnostic yield and therapeutic implications. Seizure. 2014; 23 (8): 598–602. https://doi.org/10.1016/j.seizure.2014.04.009.

32. Malter M.P., Frisch C., Zeitler H., et al. Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure. 2015; 30: 57–63. https://doi.org/10.1016/j.seizure.2015.05.017.

33. Bien C.G., Vincent A., Barnett M.H., et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012; 135 (5): 1622–38. https://doi.org/10.1093/brain/aws082.

34. Bernal F., Graus F., Pifarré A., et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. 2002; 103 (5): 509–15. https://doi.org/10.1007/s00401-001-0498-0.

35. Bien C.G., Bauer J., Deckwerth T.L., et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen's encephalitis. Ann Neurol. 2002; 51 (3): 311–18. https://doi.org/10.1002/ana.10100.

36. Fisher R.S., van Emde Boas W., Blume W., et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005; 46 (4): 470–2. https://doi.org/10.1111/j.0013-9580.2005.66104.x.

37. Fisher R.S., Acevedo C., Arzimanoglou A., et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014; 55 (4): 475–82. https://doi.org/10.1111/epi.12550.

38. Carreño M., Bien C.G., Asadi-Pooya A.A., et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res. 2017; 129: 101–5. https://doi.org/10.1016/j.eplepsyres.2016.12.010.

39. Singh T.D., Fugate J.E., Hocker S.E., Rabinstein A.A. Postencephalitic epilepsy: clinical characteristics and predictors. Epilepsia. 2015; 56 (1): 133–8. https://doi.org/10.1111/epi.12879.

40. Varadkar S., Bien C.G., Kruse C.A., et al. Rasmussen's encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014; 13 (2): 195–205. https://doi.org/10.1016/S1474-4422(13)70260-6.

41. Belousova E.D., Yablonskaya M.I., Tagirova M.K., et al. Immune-mediated epilepsies in children. Rossiyskiy Vestnik Perinatologii i Pediatrii / Russian Bulletin of Perinatology and Pediatrics. 2015; 60 (5): 26–32 (in Russ.).

42. Kotov A.S., Eliseev Y.V., Semenova E.I., et al. Status epilepticus in a patient with Rasmussen’s encephalitis. Almanac of Clinical Medicine. 2016; 44 (3): 363–8 (in Russ.). https://doi.org/10.18786/2072-0505-2016-44-3-363-368.

43. van Sonderen A., Thijs R.D., Coenders E.C., et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology. 2016; 87 (14): 1449–56. https://doi.org/10.1212/WNL.0000000000003173.

44. Finke C., Prüss H., Heine J., et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol. 2017; 74 (1): 50–9. https://doi.org/10.1001/jamaneurol.2016.4226.

45. Miller T.D., Chong T.T., Aimola Davies A.M., et al. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis. Brain. 2017; 140 (5): 1212–9. https://doi.org/10.1093/brain/awx070.

46. Pitkänen A., Lukasiuk K., Dudek F.E., Staley K.J. Epileptogenesis. Cold Spring Harb Perspect Med. 2015; 5 (10): a022822. https://doi.org/10.1101/cshperspect.a022822.

47. Vogrig A., Joubert B., André-Obadia N., et al. Seizure specificities in patients with antibody-mediated autoimmune encephalitis. Epilepsia. 2019; 60 (8): 1508–25. https://doi.org/10.1111/epi.16282.

48. Quek A.M., Britton J.W., McKeon A., et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012; 69 (5): 582–93. https://doi.org/10.1001/archneurol.2011.2985.

49. Toledano M., Britton J.W., McKeon A., et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology. 2014; 82 (18): 1578–86. https://doi.org/10.1212/WNL.0000000000000383.

50. Britton J. Autoimmune epilepsy. Handb Clin Neurol. 2016; 133: 219–45. https://doi.org/10.1016/B978-0-444-63432-0.00013-X.

51. Davis R., Dalmau J. Autoimmunity, seizures, and status epilepticus. Epilepsia. 2013; 54 (Suppl. 6): 46–9. https://doi.org/10.1111/epi.12276.

52. Spatola M., Dalmau J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol. 2017; 30 (3): 345–53. https://doi.org/10.1097/WCO.0000000000000449.

53. Hubers L., Valderrama-Carvajal H., Laframboise J., et al. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet. 2011; 20 (3): 553–79. https://doi.org/10.1093/hmg/ddq500.

54. Okano H.J., Darnell R.B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci. 1997; 17 (9): 3024–37. https://doi.org/10.1523/JNEUROSCI.17-09-03024.1997.

55. Roberts W.K., Deluca I.J., Thomas A., et al. Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells. J Clin Invest. 2009; 119 (7): 2042–51. https://doi.org/10.1172/JCI36131.

56. Dubey D., Toledano M., McKeon A. Clinical presentation of autoimmune and viral encephalitides. Curr Opin Crit Care. 2018; 24 (2): 80–90. https://doi.org/10.1097/MCC.0000000000000483.

57. Rudzinski L.A., Pittock S.J., McKeon A., et al. Extratemporal EEG and MRI findings in ANNA-1 (anti-Hu) encephalitis. Epilepsy Res. 2011; 95 (3): 255–62. https://doi.org/10.1016/j.eplepsyres.2011.04.006.

58. Dalmau J., Graus F., Villarejo A., et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004; 127 (Pt. 8): 1831–44. https://doi.org/10.1093/brain/awh203.

59. Voltz R., Gultekin S.H., Rosenfeld M.R., et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N Engl J Med. 1999; 340 (23): 1788–95. https://doi.org/10.1056/NEJM199906103402303.

60. Quek A.M., O'Toole O. Autoimmune epilepsy: the evolving science of neural autoimmunity and its impact on epilepsy management. Semin Neurol. 2018; 38 (3): 290–302. https://doi.org/10.1055/s-0038-1660860.

61. Pittock S.J., Yoshikawa H., Ahlskog J.E., et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc. 2006; 81 (9): 1207–14. https://doi.org/10.4065/81.9.1207.

62. Panina Yu.S., Dmitrenko D.V., Sapronova M.R. Clinical case of early diagnosis of autoimmune epilepsy. Doctor.Ru. 2019; 1 (156): 10–3 (in Russ.). https://doi.org/10.31550/1727-2378-2019-156-1-10-13.

63. Yu Z., Kryzer T.J., Griesmann G.E., et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001; 49 (2): 146–54.

64. Vernino S., Tuite P., Adler C.H., et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol. 2002; 51 (5): 625–30. https://doi.org/10.1002/ana.10178.

65. Titulaer M.J., McCracken L., Gabilondo I., et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013; 12 (2): 157–65. https://doi.org/10.1016/S1474-4422(12)70310-1.

66. Dalmau J., Geis C., Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017; 97 (2): 839–87. https://doi.org/10.1152/physrev.00010.2016.

67. Lai M., Hughes E.G., Peng X., et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009; 65 (4): 424–34. https://doi.org/10.1002/ana.21589.

68. Haselmann H., Mannara F., Werner C., et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron. 2018; 100 (1): 91–105.e9. https://doi.org/10.1016/j.neuron.2018.07.048.

69. Joubert B., Kerschen P., Zekeridou A., et al. Clinical spectrum of encephalitis associated with antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol. 2015; 72 (10): 1163–9. https://doi.org/10.1001/jamaneurol.2015.1715.

70. Spatola M., Sabater L., Planagumà J., et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology. 2018; 90 (22): e1964–72. https://doi.org/10.1212/WNL.0000000000005614.

71. Dale R.C., Merheb V., Pillai S., et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012; 135 (Pt. 11): 3453–68. https://doi.org/10.1093/brain/aws256.

72. Aurangzeb S., Symmonds M., Knight R.K., et al. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure. 2017; 50: 14–7. https://doi.org/10.1016/j.seizure.2017.05.017.

73. Thompson J., Bi M., Murchison A.G., et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018; 141 (2): 348–56. https://doi.org/10.1093/brain/awx323.

74. Irani S.R., Michell A.W., Lang B., et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011; 69 (5): 892–900. https://doi.org/10.1002/ana.22307.

75. Andrade D.M., Tai P., Dalmau J., Wennberg R. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology. 2011; 76 (15): 1355–7. https://doi.org/10.1212/WNL.0b013e3182152808.

76. Wieser S., Kelemen A., Barsi P., et al. Pilomotor seizures and status in non-paraneoplastic limbic encephalitis. Epileptic Disord. 2005; 7 (3): 205–11.

77. Rocamora R., Becerra J.L., Fossas P., et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure. 2014; 23 (8): 670–3. https://doi.org/10.1016/j.seizure.2014.04.013.

78. Gadoth A., Pittock S.J., Dubey D., et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017; 82 (1): 79–92. https://doi.org/10.1002/ana.24979.

79. Lilleker J.B., Jones M.S., Mohanraj R., et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology. 2016; 87 (17): 1848–9. https://doi.org/10.1212/WNL.0000000000003300.

80. Boronat A., Gelfand J.M., Gresa-Arribas N., et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013; 73 (1): 120–8. https://doi.org/10.1002/ana.23756.

81. Carvajal-González A., Leite M.I., Waters P., et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014; 137 (Pt. 8): 2178–92. https://doi.org/10.1093/brain/awu142.

82. Sabater L., Gaig C., Gelpi E., et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 2014; 13 (6): 575–86. https://doi.org/10.1016/S1474-4422(14)70051-1.

83. Gaig C., Graus F., Compta Y., et al. Clinical manifestations of the anti-IgLON5 disease. Neurology. 2017; 88 (18): 1736–43. https://doi.org/10.1212/WNL.0000000000003887.

84. Landa J., Gaig C., Plagumà J., et al. Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol. 2020; 88 (5): 1023–7. https://doi.org/10.1002/ana.25857.

85. Lv R.J., Ren H.T., Guan H.Z., et al. Seizure semiology: an important clinical clue to the diagnosis of autoimmune epilepsy. Ann Clin Transl Neurol. 2018; 5 (2): 208–15. https://doi.org/10.1002/acn3.520.

86. Gillinder L., Tjoa L., Mantzioris B., et al. Refractory chronic epilepsy associated with neuronal auto-antibodies: could perisylvian semiology be a clue? Epileptic Disord. 2017; 19 (4): 439–49. https://doi.org/10.1684/epd.2017.0946.

87. Dogan Onugoren M., Deuretzbacher D., Haensch C.A., et al. Limbic encephalitis due to GABAB and AMPA receptor antibodies: a case series. J Neurol Neurosurg Psychiatry. 2015; 86 (9): 965–72. https://doi.org/10.1136/jnnp-2014-308814.

88. Höftberger R., Titulaer M.J., Sabater L., et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013; 81 (17): 1500–6. https://doi.org/10.1212/WNL.0b013e3182a9585f.

89. Van Coevorden-Hameete M.H., de Bruijn M.A., de Graaff E., et al. The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain. 2019; 142 (6): 1631–43. https://doi.org/10.1093/brain/awz094.

90. Petit-Pedrol M., Armangue T., Peng X., et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014; 13 (3): 276–86. https://doi.org/10.1016/S1474-4422(13)70299-0.

91. Al-Diwani A., Handel A., Townsend L., et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry. 2019; 6 (3): 235–46. https://doi.org/10.1016/S2215-0366(19)30001-X.

92. Dalmau J., Gleichman A.J., Hughes E.G., et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008; 7 (12): 1091–8. https://doi.org/10.1016/S1474-4422(08)70224-2.

93. Chanson E., Bicilli É., Lauxerois M., et al. Anti-NMDA-R encephalitis: should we consider extreme delta brush as electrical status epilepticus? Neurophysiol Clin. 2016; 46 (1): 17–25. https://doi.org/10.1016/j.neucli.2015.12.009.

94. Goncharova Z.A, Megeryan V.A., Yarosh N.M., et al. Herpes-associated autoimmune encephalitis (clinical case). Practical Medicine. 2019; 17 (7): 167–9 (in Russ.). https://doi.org/10.32000/2072-1757-2019-7-167-169.

95. Shnayder N.A., Dmitrenko D.V., Dykhno Yu.A., Ezhikova V.V. Problems of paraneoplastic limbic encephalitis diagnosis. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2013; 5 (3): 49–58 (in Russ.).

96. Shnayder N.A., Dmitrenko D.V., Dykhno YU.A., Ezhikova V.V. Paraneoplastic limbic encephalitis in neuorological and oncological practice. Russian Journal of Oncology. 2013; 1: 49–57 (in Russ.).

97. Sherman M.A., Ardashev I.V., Ponomareva I.V., Sherman H. Nonconvulsive status epilepticus in patients with limbic encephalitis. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2016; 8 (4): 74–83 (in Russ.). https://doi.org/10.17749/2077-8333.2016.8.4.074-083.

98. Kilic M.A., Yoruk Yildirim Z.N., Oner A., et al. Pediatric LGI1 and CASPR2 autoimmunity associated with COVID 19: Morvan syndrome. J Neurol. 2021; 268 (12): 4492–4. https://doi.org/.1007/s00415-021-10614-6.

99. Mueller S.H., Färber A., Prüss H., et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol. 2018; 83 (4): 863–9. https://doi.org/10.1002/ana.25216.

100. Höftberger R., van Sonderen A., Leypoldt F., et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology. 2015; 84 (24): 2403–12. https://doi.org/10.1212/WNL.0000000000001682.

101. Carr I. The Ophelia syndrome: memory loss in Hodgkin's disease. Lancet. 1982; 1 (8276): 844–5. https://doi.org/10.1016/s0140-6736(82)91887-6.

102. Lancaster E., Martinez-Hernandez E., Titulaer M.J., et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011; 77 (18): 1698–701. https://doi.org/10.1212/WNL.0b013e3182364a44.

103. Ulukhanova L.U., Yaraliev M.M., Attaeva S.M. Limbic autoimmune encephalitis with antibodies to glutamate decarboxylase (GAD). Children Infections. 2020; 19 (2): 67–71 (in Russ.). https://doi.org/10.22627/2072-8107-2020-19-2-67-71.

104. Bien C.G., Granata T., Antozzi C., et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005; 128 (Pt. 3): 454–71. https://doi.org/10.1093/brain/awh415.

105. Gaspard N., Foreman B.P., Alvarez V., et al. New-onset refractory status epilepticus: etiology, clinical features, and outcome. Neurology. 2015; 85 (18): 1604–13. https://doi.org/10.1212/WNL.0000000000001940.


Review

For citations:


Shilkina О.S., Kantimirova E.A., Usoltseva A.A., Prusova Т.I., Dmitrenko D.V. Autoimmune epilepsy. Epilepsy and paroxysmal conditions. 2022;14(1):74-90. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2022.108

Views: 633


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)