Preview

Epilepsy and paroxysmal conditions

Advanced search

Whole-exome sequencing of patients with juvenile myoclonic epilepsy

https://doi.org/10.17749/2077-8333/epi.par.con.2022.119

Abstract

Background. Juvenile myoclonic epilepsy (JME) is the most common type of idiopathic generalized epilepsy with onset in adolescence and adulthood. During medical genetic counseling in probands with JME, aggravated epilepsy-related heredity is often detected. However, specific genetic variants of JME predisposition remain inconclusive. The use of contemporary methods of genetic analysis, particularly whole-exome and whole-genome sequencing, allows to detect, confirm and strengthen an association of any certain pathological phenotype with one or another pathogenic variant in a number of genes.

Objective: to analyze the results of whole exome sequencing in patients with JME and seek for JME associations.

Material and methods. The study included 7 patients with established JME diagnosis and 1 proband child without clinical signs of epilepsy. Whole exome sequencing was carried out by using MiSeq (Illumina, USA), bioinformatics analysis was performed on the Genomenal platform (Novel Software Systems, Russia).

Results. Heterozygous carriage of pathogenic variants in the genes of recessive diseases was revealed: SACS, AHI1, CEP164, ANO10, RMND1, POMGNT1, FLG, ACTB. The analysis of the identified genetic variants in the patients examined showed no association with the clinical picture of the disease. Heterozygous missense mutations in CLCN2, EFHC1, JRK, ME2 genes and frameshift mutation in the CACNB4 gene were detected.

 Conclusion. In recent years, significant efforts were made to identify genes which predispose to JME. During our study, monogenic and/or polygenic pathogenic variants in patients with JME and a child of proband with JME were not identified. The high genetic heterogeneity of JME can explain numerous unsuccessful attempts to find genes predisposing to JME. Further research is necessary to confirm variants associated with potential JME. Advances in genomic technology can expand our understanding of the genetics of this pathology.

About the Authors

E. E. Timechko
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Elena E. Timechko – Laboratory Assistant, Laboratory of Medical Genetics, Center of Collective Usage “Molecular and Cellular
Technologies”, 

 WoS ResearcherID: CAF-2677-2022; RSCI SPIN-code: 2711-7770

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



O. S. Shilkina
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Olga S. Shilkina – MD, PhD, Neurologist, Neurological Center of Epileptology, Neurogenetics and Brain Research, University Clinic

RSCI SPIN-code: 1150-7413

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



N. V. Oreshkova
Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Institute of Fundamental Biology and Biotechnology, Siberian Federal University
Russian Federation

Natalya V. Oreshkova – PhD (Biol.), Head of Laboratory of Genomic Research and Biotechnology ; Senior Researcher, Laboratory of Forest Genomics, Scientific and Educational Center for Genomic Research

WoS ResearcherID: L-5516-2017; Scopus Author ID: 55793767200; RSCI SPIN-code: 4149-9633

50 Akademgorodok Str., Krasnoyarsk 660036; 79 Svobodnyy Ave., Krasnoyarsk 660041



V. O. Kobanenko
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Vladislav O. Kobanenko – 5th-Year Student (Medical Cybernetics)

RSCI SPIN-code: 1143-4417

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



E. A. Osipova
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Elizaveta A. Osipova – 5th-Year Student (Medical Cybernetics)

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



N. A. Shnayder
Voino-Yasenetsky Krasnoyarsk State Medical University ; Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Natalya A. Shnayder – Dr. Med. Sc., Professor, Leading Researcher, Center of Collective Usage “Molecular and Cellular
Technologies” ; Leading Researcher, Department of
Personalized Psychiatry and Neurology

WoS ResearcherID: M-7084-2014; RSCI SPIN-code: 1952-3043

1 Partizan Zheleznyak Str., Krasnoyarsk 660022; 3 Bekhterev Str., Saint Petersburg 192019

 



D. V. Dmitrenko
Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Diana V. Dmitrenko – Dr. Med. Sc., Chief of Chair of Medical Genetics and Clinical Neurophysiology, Institute of Professional
Education

WoS ResearcherID: H-7787-2016; RSCI SPIN-code: 9180-6623

1 Partizan Zheleznyak Str., Krasnoyarsk 660022



References

1. Karlov V.A. Epilepsy in children and adult women and men. A guide for doctors. 2nd ed. Мoscow: Binom; 2019: 896 pp. (in Russ.).

2. Marini C., Scheffer I. E., Crossland K.M., et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia. 2004; 45 (5): 467–78. https://doi.org/10.1111/j.0013-9580.2004.46803.x.

3. Fisher R.S., Cross J.H., French J.A., et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 (4): 522–30. https://doi.org/10.1111/epi.13670.

4. Hirsch E., French J., Scheffer I.E., et al. ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia. 2022; 63 (6): 1475–99. https://doi.org/10.1111/epi.17236.

5. Scala M., Bianchi A., Bisulli F., et al. Advances in genetic testing and optimization of clinical management in children and adults with epilepsy. Expert Rev Neurother. 2020; 20 (3): 251–69. https://doi.org/1 0.1080/14737175.2020.1713101.

6. Helbig I. Genetic causes of generalized epilepsies. Semin Neurol. 2015; 35 (03): 288–92. https://doi.org/10.1055/s-0035-1552922.

7. Nogovitsyn V.Yu., Sharkov A.A. EEG in genetic generalized epilepsies. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2020; 12 (1S): S23–40 (in Russ.). https://doi.org/10.17749/2077-8333.2020.12.1S.S23-S40.

8. Hempelmann A., Taylor K.P., Heils A., et al. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia. 2006; 47 (10): 1682–90. https://doi. org/10.1111/j.1528-1167.2006.00677.x.

9. Vadlamudi L., Andermann E., Lombroso C.T., et al. Epilepsy in twins: insights from unique historical data of William Lennox. Neurology. 2004; 62 (7): 1127–33. https://doi.org/10.1212/01. wnl.0000118201.89498.48.

10. Corey L.A., Pellock J.M., Kjeldsen M.J., et al. Importance of genetic factors in the occurrence of epilepsy syndrome type: a twin study. Epilepsy Res. 2011; 97 (1-2): 103–11. https://doi.org/10.1016/j. eplepsyres.2011.07.018.

11. Wallace R.H., Marini C., Petrou S., et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001; 28 (1): 49–52. https://doi.org/10.1038/ng0501-49.

12. Cossette P., Liu L., Brisebois K., et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002; 31 (2): 184–9. https://doi.org/10.1038/ng885.

13. Arsov T., Mullen S.A., Rogers S., et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol. 2012; 72 (5): 807–15. https://doi.org/10.1002/ana.23702.

14. Scheffer I.E., Berkovic S., Capovilla G., et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58 (4): 512–21. https://doi.org/10.1111/epi.13709.

15. Helbig I., Mefford H.C., Sharp A.J., et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009; 41 (2): 160–2. https://doi.org/10.1038/ng.292.

16. de Kovel C.G., Trucks H., Helbig I., et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain. 2010; 133 (Pt. 1): 23–32. https://doi.org/10.1093/ brain/awp262.

17. Dibbens L.M., Mullen S., Helbig I., et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet. 2009; 18 (19): 3626–31. https://doi.org/10.1093/hmg/ddp311.

18. Santos B.P.D., Marinho C.R.M., Marques T.E.B.S., et al. Genetic susceptibility in juvenile myoclonic epilepsy: systematic review of genetic association studies. PLoS One. 2017; 12 (6): e0179629. https://doi.org/10.1371/journal.pone.0179629.

19. Mullen S.A., Berkovic S.F. ILAE Genetics Commission. Genetic generalized epilepsies. Epilepsia. 2018; 59 (6): 1148–53. https://doi.org/10.1111/epi.14042.

20. Shnayder N.A., Shilkina O.S., Petrov K.V., et al. Clinical and genetic heterogenity of juvenile myoclonic epilepsy. Epilepsia i paroksizmalʹnye sostoania / Epilepsy and Paroxysmal Conditions. 2016; 8 (2): 20–36 (in Russ.). https://doi.org/10.17749/2077- 8333.2016.8.2.020-036.

21. Wang J., Lin Z.J., Liu L., et al. Epilepsy-associated genes. Seizure. 2017; 44: 11–20. https://doi.org/10.1016/j.seizure.2016.11.030.

22. National Library of Medicine. ClinVar. Available at: https://www.ncbi. nlm.nih.gov/clinvar/ (accessed 25.04.2022).

23. Genome Aggregation Database (gnomAD). Available at: https://gnomad.broadinstitute.org (accessed 23.04.2022).

24. Exome Aggregation Consortium (ExAC). Available at: https://ngdc. cncb.ac.cn/databasecommons/database/id/3774 (accessed 23.04.2022).

25. OMIM®. An Online Catalog of Human Genes and Genetic Disorders. Available at: https://www.omim.org (accessed 23.04.2022).

26. Ensembl. Available at: https://www.ensembl.org/index.html (accessed 23.04.2022).

27. National Library of Medicine. National Center for Biotechnology Information. Available at: https://www.ncbi.nlm.nih.gov (accessed 23.04.2022).

28. UniProt. Available at: https://www.uniprot.org (accessed 23.04.2022).

29. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., et al. Guidelines for the interpretation of massive parallel sequencing variants. Medical Genetics. 2017; 16 (7): 4–17 (in Russ.).

30. Baulac S., Huberfeld G., Gourfinkel-An I., et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet. 2001; 28 (1): 46–8. https://doi.org/10.1038/ng0501-46.

31. Huang X., Hernandez C.C., Hu N., et al. Three epilepsy-associated GABRG2 missense mutations at the γ+/β– interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis. 2014; 68: 167–79. https://doi.org/10.1016/j.nbd.2014.04.015.

32. Shi X., Huang M.C., Ishii A., et al. Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet. 2010; 55 (6): 375–8. https://doi.org/10.1038/jhg.2010.47.

33. Huang X., Tian M., Hernandez C.C., et al. The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis. 2012; 48 (1): 115–23. https://doi.org/10.1016/j.nbd.2012.06.013.

34. Ishii A., Kanaumi T., Sohda M., et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res. 2014; 108 (3): 420–32. https://doi.org/10.1016/j.eplepsyres.2013.12.005.

35. Ishii A., Kanaumi T., Sohda M., et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res. 2014; 108 (3): 420–32. https://doi.org/10.1016/j.eplepsyres.2013.12.005.

36. Hirose S. A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res. 2006; 70 (1): S206–17. https://doi.org/10.1016/j. eplepsyres.2005.12.007.

37. Johnston A.J., Kang J.Q., Shen W., et al. A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes. Neurobiol Dis. 2014; 64: 131–41. https://doi.org/10.1016/j.nbd.2013.12.013.

38. Harkin L.A., Bowser D.N., Dibbens L.M., et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2002; 70 (2): 530–6. https://doi.org/10.1086/338710.

39. Sun H., Zhang Y., Liang J., et al. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet. 2008; 53 (8): 769–74. https://doi.org/10.1007/s10038-008-0306-y.

40. Tian M., Mei D., Freri E., et al. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation. Neurobiol Dis. 2013; 50: 135–41. https://doi.org/10.1016/j. nbd.2012.10.008.

41. Kananura C., Haug K., Sander T., et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol. 2002; 59 (7): 1137–41. https://doi. org/10.1001/archneur.59.7.1137.

42. Balan S., Sathyan S., Radha SK., et al. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics. 2013; 23 (11): 605–10. https://doi.org/10.1097/ FPC.0000000000000000.

43. Kang J.Q., Shen W., Macdonald R.L. Two molecular pathways (NMD and ERAD) contribute to a genetic epilepsy associated with the GABAA receptor GABRA1 PTC Mutation, 975delC, S326fs328X. J Neurosci. 2009.; 29 (9): 2833–44. https://doi.org/10.1523/ jneurosci.4512-08.2009.

44. Maljevic S., Krampfl K., Cobilanschi J., et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol. 2006; 59 (6): 983–7. https://doi.org/10.1002/ ana.20874.

45. Lachance-Touchette P., Brown P., Meloche C., et al. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci. 2011; 34 (2): 237–49. https://doi.org/10.1111/j.1460-9568.2011.07767.x.

46. Suzuki T., Delgado-Escueta A.V., Aguan K., et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet. 2004; 36 (8): 842–9. https://doi.org/10.1038/ng1393.

47. Annesi F., Gambardella A., Michelucci R., et al. Mutational analysis of EFHC1 gene in Italian families with juvenile myoclonic epilepsy. Epilepsia. 2007; 48 (9): 1686–90. https://doi. org/10.1111/j.1528-1167.2007.01173.x.

48. Medina M.T., Suzuki T., Alonso M.E., et al. Novel mutations in Myoclonin1/EFHC1 in sporadic and familial juvenile myoclonic epilepsy. Neurology. 2008; 70 (22 Pt. 2): 2137–44. https://doi. org/10.1212/01.wnl.0000313149.73035.99.

49. Thounaojam R., Langbang L., Itisham K., et al. EFHC1 mutation in Indian juvenile myoclonic epilepsy patient. Epilepsia Open. 2017; 2 (1): 84–9. https://doi.org/10.1002/epi4.12037.

50. Pinto D., Louwaars S., Westland B., et al. Heterogeneity at the JME 6p11-12 locus: absence of mutations in the EFHC1 gene in linked Dutch families. Epilepsia. 2006; 47 (10): 1743–6. https://doi. org/10.1111/j.1528-1167.2006.00676.x.

51. Escayg A., De Waard M., Lee D.D., et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000; 66 (5): 1531–9. https://doi. org/10.1086/302909.

52. D’Agostino D., Bertelli M., Gallo S., et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology. 2004; 63 (8): 1500–2. https://doi.org/10.1212/01. wnl.0000142093.949.

53. Haug K., Warnstedt M., Alekov A.K., et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet. 2003; 33 (4): 527–32. https://doi.org/10.1038/ng1121.

54. Kleefuß-Lie A., Friedl W., Cichon S., et al. CLCN2 variants in idiopathic generalized epilepsy. Nat Genet. 2009; 41 (9): 954–5. https://doi.org/10.1038/ng0909-954.

55. Everett K., Chioza B., Aicardi J., et al. Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res. 2007; 75 (2-3): 145–53. https://doi.org/10.1016/j. eplepsyres.2007.05.004.

56. Niemeyer M.I., Cid L.P., Sepúlveda F.V., et al. No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nat Genet. 2010; 42 (1): 3. https://doi.org/10.1038/ng0110-3.

57. Stogmann E., Lichtner P., Baumgartner C., et al. Mutations in the CLCN2 gene are a rare cause of idiopathic generalized epilepsy syndromes. Neurogenetics. 2007; 7 (4): 265–8. https://doi. org/10.1007/s10048-006-0057-x.

58. Xie H., Su W., Pei J., et al. De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy. Epilepsy Res. 2019; 154: 55–61. https://doi.org/10.1016/j.eplepsyres.2019.04.

59. Shang E., Wang X., Wen D., et al. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn. 2009; 238 (4): 908–17. https://doi.org/10.1002/dvdy.21911.

60. Shilkina О.S., Zobova S.N., Domoratskaya Е.А., Dmitrenko D.V. Clinical and genetic characteristics of juvenile myoclonic epilepsy. Personalized Psychiatry and Neurology. 2021; 1 (2): 95–105. https://doi.org/10.52667/2712-9179-2021-1-2-95-105.

61. Shilkina O.S., Shnayder N.A., Zobova S.N., et al. Association of the carriage of BRD2 rs206787 and rs516535 and GJD2 rs3743123 polymorphisms with juvenile myoclonic epilepsy in Caucasian patients of Siberia. Neurology, Neuropsychiatry, Psychosomatics. 2019; 11 (4): 61–7 (in Russ.). https://doi.org/10.14412/2074-2711- 2019-4-61-67.

62. Tanaka M., Olsen R.W., Medina M.T., et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet. 2008; 82 (6): 1249–61. https://doi.org/.1016/j.ajhg.2008.04.020.

63. Kearney J.A. Locus heterogeneity in epilepsy of infancy with migrating focal seizures. Epilepsy Curr. 2016; 16 (1): 43–5. https://doi.org/10.5698/1535-7597-16.1.43.

64. Larsen J., Johannesen K.M., Ek J., et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015; 56 (12): e203–8. https://doi.org/10.1111/ epi.13222.

65. Zhang Y., Qu J., Mao C.X., et al. Novel susceptibility loci were found in Chinese genetic generalized epileptic patients by genome-wide association study. CNS Neurosci Ther. 2014; 20 (11): 1008–10. https://doi.org/10.1111/cns.12328.


Review

For citations:


Timechko E.E., Shilkina O.S., Oreshkova N.V., Kobanenko V.O., Osipova E.A., Shnayder N.A., Dmitrenko D.V. Whole-exome sequencing of patients with juvenile myoclonic epilepsy. Epilepsy and paroxysmal conditions. 2022;14(3):254-266. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2022.119

Views: 1406


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)