Preview

Epilepsy and paroxysmal conditions

Advanced search

A systematic review of lithium biology and pharmacology and toxicological evaluation of new organic lithium salts

https://doi.org/10.17749/2077-8333/epi.par.con.2024.196

Abstract

Objective: to systematize scientific data on biomedical studies investigating trace element lithium over the past 70 years; evaluate toxic properties of lithium ascorbate (LiAsc) as an important promising candidate molecule.

Material and methods. An analysis of 49,959 publications on lithium biomedical research retrieved from PubMed/MEDLINE database was carried out using modern data mining methods developed within the framework of topological approach to recognizing (Yu.I. Zhuravlev scientific school). Publications found by experts and not indexed in PubMed/MEDLINE were used in discussing the results of a systematic analysis of publications array retrieved from PubMed/MEDLINE. An experimental study of chronic 180 day-long LiAsc (at doses of 5, 50 and 150 mg/kg) toxicity was performed on 36 “Soviet chinchilla” rabbits by assessing local irritant action. Intoxication clinical picture, body weight dynamics, water and food intake as well as physiological, hematological and biochemical parameters were analyzed.

Results. Classification and systematization of all currently available publications on lithium biology and medicine were performed. It was shown that pharmacological applications of lithium salts in mental disorders as well as lithium effects on simple sugars metabolism, lipid metabolism, blood pressure regulation, hematopoiesis, inflammation and tumor growth inhibition, neurotransmitter homeostasis, neurotrophic and neuroprotective molecular mechanisms as well as homeostasis of other electrolytes comprised promising fields of lithium drug research. The prospects for using organic lithium salts, particularly LiAsc, for various therapeutic goals were also discussed. 180-day-long oral administration of LiAsc at doses of 5, 50, 150 mg/kg resulted in no macroscopic signs of local inflammatory reaction while examining its local irritant effect.

Conclusion. The lithium-ion effect on neurotransmitters promotes neuroprotection and reduces a risk of addiction. The antihypertensive, antiatherosclerotic, antidiabetic, antitumor and neurotrophic effects related to organic lithium salts may be beneficial in various therapeutic applications.

About the Authors

I. Yu. Torshin
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin, PhD 

44 corp. 2 Vavilov Str., Moscow 119333

WoS ResearcherID: C-7683-2018. Scopus Author ID: 7003300274



O. A. Gromova
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Olga A. Gromova, Dr. Sci. Med., Prof. 

44 corp. 2 Vavilov Str., Moscow 119333

WoS ResearcherID: J-4946-2017. Scopus Author ID: J-4946-2017



V. V. Rastashansky
Normofarm LLC
Russian Federation

Vyacheslav V. Rastashansky 

5 Nobel Str. (Skolkovo Innovation Center Territory), Moscow 121205 



A. A. Garanin
Ivanovo State Medical University
Russian Federation

Alexey A. Garanin 

8 Sheremetyevsky Ave., Ivanovo 153012



References

1. Gogoleva I.V., Gromova O.A., Torshin I.Yu., et al. A systematic analysis of neurobiological roles of lithium. S.S. Korsakov Journal of Neurology and Psychiatry. 2022; 122 (11): 17–23 (in Russ.). https://doi.org/10.17116/jnevro202212211117.]

2. Torshin I.Yu. On the formation of sets of precedents basedon tables of heterogeneous feature descriptions by methods of topological theory of data analysis. Informatika i ee primeneniya / Informatics and Applications. 2023, 17 (3): 2–7. https://doi.org/10.14357/19922264230301.]

3. Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., et al. Analysis of 19.9 million publications from the PubMed/MEDLINE database using artificial intelligence methods: approaches to the generalizations of accumulated data and the phenomenon of “fake news”. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13 (2): 146–63 (in Russ.).https://doi.org/10.17749/2070-4909/ farmakoekonomika.2020.021.]

4. Chang C.M., Wu C.S., Huang Y.W., et al. Utilization of psychopharmacological treatment among patients with newly diagnosed bipolar disorder from 2001 to 2010. J Clin Psychopharmacol. 2016; 36 (1): 32–44. https://doi.org/10.1097/JCP.0000000000000440.

5. Pallanti S., Quercioli L., Sood E., Hollander E. Lithium and valproate treatment of pathological gambling: a randomized singleblind study. J Clin Psychiatry. 2002; 63 (7): 559–64. https://doi.org/10.4088/jcp.v63n0704.

6. Dilsaver S.C., Swann A.C., Shoaib A.M., Bowers T.C. The manic syndrome: factors which may predict a patient's response to lithium, carbamazepine and valproate. J Psychiatry Neurosci. 1993; 18 (2): 61–6.

7. Zhou Z., Wang Y., Tan H., et al. Chronic treatment with mood stabilizer lithium inhibits amphetamine-induced risk-taking manic-like behaviors. Neurosci Lett. 2015; 603: 84–8. https://doi.org/10.1016/j.neulet.2015.07.027.

8. Ago Y., Tanaka T., Kita Y., et al. Lithium attenuates methamphetamine-induced hyperlocomotion and behavioral sensitization via modulation of prefrontal monoamine release. Neuropharmacology. 2012; 62 (4): 1634–9. https://doi.org/10.1016/j.neuropharm.2011.10.004.

9. Bachmann R.F., Wang Y., Yuan P., et al. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol. 2009; 12 (6): 805–22. https://doi.org/10.1017/S1461145708009802.

10. Wu J., Zhu D., Zhang J., et al. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/ GSK3β/mTOR pathway. Biochem Biophys Res Commun. 2015; 465 (3): 368–73. https://doi.org/10.1016/j.bbrc.2015.08.005.

11. Kaschka W.P., Thürauf N., Mokrusch T., Korth M. Electrooculography and dark adaptation in patients with affective and schizoaffective psychoses: early physiological effects of carbamazepine and lithium. Pharmacopsychiatry. 1988; 21 (6): 404–6. https://doi.org/10.1055/s-2007-1017027.

12. Tsuji S., Morinobu S., Tanaka K., et al. Lithium, but not valproate, induces the serine/threonine phosphatase activity of protein phosphatase 2A in the rat brain, without affecting its expression. J Neural Transm. 2003; 110 (4): 413–25. https://doi.org/10.1007/s00702-002-0798-0.

13. Flemenbaum A., Weddige R., Miller J. Jr. Lithium erythrocyte/ plasma ratio as a predictor of response. Am J Psychiatry. 1978; 135 (3): 336–8. https://doi.org/10.1176/ajp.135.3.336.

14. Wilot L.C., Bernardi A., Frozza R.L., et al. Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem Res. 2007; 32 (9): 1539–46. https://doi.org/10.1007/s11064-007-9348-3.

15. Shao L., Young L.T., Wang J.F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry. 2005; 58 (11): 879–84. https://doi.org/10.1016/j.biopsych.2005.04.052.

16. Tsai L.K., Wang Z., Munasinghe J., et al. Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke. 2011; 42 (10): 2932–9. https://doi.org/10.1161/STROKEAHA.110.612788.

17. Gromova O.A., Kudrin A.V. Neurochemistry of macro- and microelements. New approaches to pharmacotherapy. Moscow: AleV; 2001: 233 рр. (in Russ.).]

18. Timmer R.T., Sands J.M. Lithium intoxication. J Am Soc Nephrol. 1999; 10 (3): 666–74. https://doi.org/10.1681/ASN.V103666.

19. Grandjean E.M., Aubry J.M. Lithium: updated human knowledge using an evidence-based approach. Part II: Clinical pharmacology and therapeutic monitoring. CNS Drugs. 2009; 23 (4): 331–49. https://doi.org/10.2165/00023210-200923040-00005.

20. El Balkhi S., Megarbane B., Poupon J., et al. Lithium poisoning: is determination of the red blood cell lithium concentration useful? Clin Toxicol. 2009; 47 (1): 8–13. https://doi.org/10.1080/15563650802392398.

21. Oslopov V.N., Ganieva R.T., Makarova T.P., et al. Sodium-lithium countertransport in essential arterial hypertension in children and adolescents. Kazan Medical Journal. 2011; 92 (1): 9–12 (in Russ.).]

22. Schrauzer G.N., Shrestha K.P., Flores-Arce M.F. Lithium in scalp hair of adults, students, and violent criminals. Effects of supplementation and evidence for interactions of lithium with vitamin B12 and with other trace elements. Biol Trace Elem Res. 1992; 34 (2): 161–76. https://doi.org/10.1007/BF02785244.

23. Zaitseva I.P., Skalny A.A., Tinkov A.A., et al. The influence of physical activity on hair toxic and essential trace element content in male and female students. Biol Trace Elem Res. 2015; 163 (1-2): 58–66. https://doi.org/10.1007/s12011-014-0172-8.

24. Bosch F., Rodriguez-Gil J.E., Hatzoglou M., et al. Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem. 1992; 267 (5): 2888–93.

25. Nordenberg J., Kaplansky M., Beery E., et al. Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1,6-diphosphate levels in rat muscles, brain and liver. Biochem Pharmacol. 1982; 31 (6): 1025–31. https://doi.org/10.1016/0006-2952(82)90338-0.

26. Nazarenko O.A., Demidov V.I., Gromova O.A., et al. Comparative study of the neuroprotective activity of lithium compounds and their effect on the course of experimental alloxan diabetes mellitus in rats. Pharmacokinetics and Pharmacodynamics. 2020; 3: 40–7 (in Russ.). https://doi.org/10.37489/2587-7836-2020-3-40-47.]

27. Lijnen P., Bex M., Bouillon R., et al. Erythrocyte sodium-lithium countertransport in insulin-dependent diabetics: correlation with membrane lipids, prorenin and micro-albuminuria. J Hypertens Suppl. 1993; 11 (5): S258–9.

28. van Dijk D.J., Erman A., Panski R., et al. Sodium-lithium countertransport: a predictor of diabetic nephropathy in Jewish insulin-dependent diabetes mellitus patients of different ethnic origin? Isr J Med Sci. 1996; 32 (2): 105–11.

29. Winocour P.H., Thomas T.H., Brown L., et al. Serum triglyceride and insulin levels are associated with erythrocyte sodium-lithium counter-transport activity in normoglycaemic individuals. Clin Chim Acta. 1992; 208 (3): 193–203. https://doi.org/10.1016/00098981(92)90076-3.

30. Dobos M., Madácsy L., Yasar S.A., et al. Red cell sodium-lithium countertransport and blood pressure in children with insulindependent diabetes mellitus. Diabetes Res Clin Pract. 1994; 26 (1): 15–20. https://doi.org/10.1016/0168-8227(94)90134-1.

31. Zawalich W.S., Zawalich K.C., Rasmussen H. Interactions between lithium, inositol and mono-oleoylglycerol in the regulation of insulin secretion from isolated perifused rat islets. Biochem J. 1989; 262 (2): 557–61. https://doi.org/10.1042/bj2620557.

32. Macko A.R., Beneze A.N., Teachey M.K., Henriksen E.J. Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch Physiol Biochem. 2008; 114 (5): 331–9. https://doi.org/10.1080/13813450802536067.

33. Fontela T., Garcia Hermida O., Gomez-Acebo J. Role of adrenoceptors in vitro and in vivo in the effects of lithium on blood glucose levels and insulin secretion in the rat. Br J Pharmacol. 1990; 100 (2): 283–8. https://doi.org/10.1111/j.1476-5381.1990.tb15796.x.

34. Squassina A., Costa M., Congiu D., et al. Insulin-like growth factor 1 (IGF-1) expression is up-regulated in lymphoblastoid cell lines of lithium responsive bipolar disorder patients. Pharmacol Res. 2013; 73: 1–7. https://doi.org/10.1016/j.phrs.2013.04.004.

35. Diaz-Sastre C., Perez-Rodriguez M.M., Cebollada A., et al. Cholesterol and lithium levels were correlated but serum HDL and total cholesterol levels were not associated with current mood state in bipolar patients. J Clin Psychiatry. 2005; 66 (3): 399–400. https://doi.org/10.4088/jcp.v66n0318i.

36. Salvagno G.L., Lippi G., Montagnana M., et al. Non-homogeneous separation of triglycerides, gamma-glutamyltransferase, C-reactive protein and lactate dehydrogenase after centrifugation of lithiumheparin tubes. Clin Chem Lab Med. 2008; 46 (8): 1180–2. https://doi.org/10.1515/CCLM.2008.237.

37. Wierzbicki A.S., Hardman T.C., Cheung J., et al. Effects of lipids in patients with familial hypercholesterolaemia on the kinetics of the sodium-lithium countertransporter. J Hum Hypertens. 2000; 14 (9): 561–5. https://doi.org/10.1038/sj.jhh.1001097.

38. Improving the effectiveness of a weight loss program. Dr. Bormental Center. Available at: http://normotim.ru/research/povyshenie-effektivnosti-programmy-snizheniya-vesa-tsentradoktor-bormental-br-s-primeneniem-prepara/ (in Russ.) (accessed 28.04.2024).]

39. Svensson J., Herlitz H., Lundberg P.A., Johannsson G. Adiponectin, leptin, and erythrocyte sodium/lithium countertransport activity, but not resistin, are related to glucose metabolism in growth hormone-deficient adults. J Clin Endocrinol Metab. 2005; 90 (4): 2290–6. https://doi.org/10.1210/jc.2004-1239.

40. Elias E., Wallenius V., Herlitz H., et al. Erythrocyte sodium-lithium countertransport activity is inversely correlated to adiponectin, retinol binding protein 4 and body height. Scand J Clin Lab Invest. 2010; 70 (7): 487–91. https://doi.org/10.3109/00365513.2010.520089.

41. Doria A., Fioretto P., Avogaro A., et al. Insulin resistance is associated with high sodium-lithium countertransport in essential hypertension. Am J Physiol. 1991; 261 (6 Pt 1): E684–91. https://doi. org/10.1152/ajpendo.1991.261.6.E684.

42. Strazzullo P., Cappuccio F.P., Trevisan M., et al. Red blood cell sodium-lithium countertransport, blood pressure, and uric acid metabolism in untreated healthy men. Am J Hypertens. 1989; 2 (8): 634–6. https://doi.org/10.1093/ajh/2.8.634.

43. Bogoyavlenskaya O.V., Oslopov V.N., Nabiullina V.N., et al. Features of the relationship between the state of erythrocyte membrane permeability by sodium and the development of arterial hypertension in women in the population. Russian Journal of Cardiology. 2004; 9 (5): 51–8 (in Russ.).]

44. Torshin I.Y., Gromova O.A., Limanova O.A. On the role of glycogen synthase kinases in the molecular mechanisms of stress conditions and prospects for the use of lithium ascorbate. Nevrologiya, neiropsikhiatriya, psikhosomatika / Neurology, Neuropsychiatry, Psychosomatics. 2022; 14 (5): 60–8 (in Russ.). https://doi.org/10.14412/2074-2711-2022-5-60-68.]

45. Koda L.Y., Shoemaker W.J., Baetge G., Bloom F.E. Lithium treatment decreases blood pressure in genetically hypertensive rats. Eur J Pharmacol. 1981; 76 (4): 411–5. https://doi.org/10.1016/00142999(81)90112-6.

46. Bisogni V., Rossitto G., Reghin F., et al. Antihypertensive therapy in patients on chronic lithium treatment for bipolar disorders. J Hypertens. 2016; 34 (1): 20–8. https://doi.org/10.1097/HJH.0000000000000758.

47. Rahimzadeh-Rofouyi B., Afsharimani B., Moezi L., et al. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation. J Cardiovasc Pharmacol. 2007; 50 (6): 641–6. https://doi.org/10.1097/FJC.0b013e318153f262.

48. Pandit V., Nesbitt S.R., Kim D.Y., et al. Combinatorial therapy using negative pressure and varying lithium dosage for accelerated wound healing. J Mech Behav Biomed Mater. 2015; 44: 173–8. https://doi.org/10.1016/j.jmbbm.2015.01.012.

49. Focosi D., Azzara A., Kast R.E., et al. Lithium and hematology: established and proposed uses. J Leukoc Biol. 2009; 85 (1): 20–8. https://doi.org/10.1189/jlb.0608388.

50. Joffe R.T. Hematological effects of lithium potentiation of carbamazepine in patients with affective illness. Int Clin Psychopharmacol. 1988; 3 (1): 53–7. https://doi.org/10.1097/00004850-198801000-00004.

51. Basselin M., Kim H.W., Chen M., et al. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res. 2010; 51 (5): 1049–56. https://doi.org/10.1194/jlr.M002469.

52. Phelan K.M., Mosholder A.D., Lu S. Lithium interaction with the cyclooxygenase 2 inhibitors rofecoxib and celecoxib and other nonsteroidal anti-inflammatory drugs. J Clin Psychiatry. 2003; 64 (11): 1328–34. https://doi.org/10.4088/jcp.v64n1108.

53. Giambelluca M.S., Bertheau-Mailhot G., Laflamme C., et al. TNF-alpha expression in neutrophils and its regulation by glycogen synthase kinase-3: a potentiating role for lithium. FASEB J. 2014; 28 (8): 3679–90. https://doi.org/10.1096/fj.14-251900.

54. Arena A., Capozza A.B., Orlando M.E., et al. In vitro effects of lithium chloride on TNF alpha and IL-6 production by monocytes from breast cancer patients. J Chemother. 1997; 9 (3): 219–26. https://doi.org/10.1179/joc.1997.9.3.219.

55. Hillert M.H., Imran I., Zimmermann M., et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpineinduced status epilepticus in rats. J Neurochem. 2014; 131 (1): 42–52. https://doi.org/10.1111/jnc.12787.

56. Beilharz G.R., Middlehurst C.R., Kuchel P.W., et al. An experimental study and computer simulation of the turnover of choline in erythrocytes of patients treated with lithium carbonate. Aust J Exp Biol Med Sci. 1986; 64 (Pt 3): 271–89. https://doi.org/10.1038/icb.1986.29.

57. Diamond J.M., Meier K., Gosenfeld L.F., et al. Recovery of erythrocyte Li+/Na+ countertransport and choline transport from lithium therapy. J Psychiatr Res. 1982; 17 (4): 385–93. https://doi.org/10.1016/0022-3956(82)90043-7.

58. Lerer B., Stanley M. Does lithium stabilize muscarinic receptors? Biol Psychiatry. 1985; 20 (11): 1247–50. https://doi.org/10.1016/0006-3223(85)90185-4.

59. Creson T.K., Austin D.R., Shaltiel G., et al. Lithium treatment attenuates muscarinic M(1) receptor dysfunction. Bipolar Disord. 2011; 13 (3): 238–49. https://doi.org/10.1111/j.13995618.2011.00915.x.

60. Ellis J., Lenox R.H. Chronic lithium treatment prevents atropineinduced supersensitivity of the muscarinic phosphoinositide response in rat hippocampus. Biol Psychiatry. 1990; 28 (7): 609–19. https://doi.org/10.1016/0006-3223(90)90399-m.

61. Stengaard-Pedersen K., Schou M. In vitro and in vivo inhibition by lithium of enkephalin binding to opiate receptors in rat brain. Neuropharmacology. 1982; 21 (8): 817–23. https://doi.org/10.1016/0028-3908(82)90070-3.

62. Kiyani A., Javadi-Paydar M., Mohammadkhani H., et al. Lithium chloride disrupts consolidation of morphine-induced conditioned place preference in male mice: the nitric oxide/cyclic GMP signaling pathway. Behav Brain Res. 2011; 219 (2): 240–7. https://doi.org/10.1016/j.bbr.2011.01.014.

63. Gillin J.C., Hong J.S., Yang H.Y., Costa E. [Met5]Enkephalin content in brain regions of rats treated with lithium. Proc Natl Acad Sci U S A. 1978; 75 (6): 2991–3. https://doi.org/10.1073/pnas.75.6.2991.

64. Gilmor M.L., Skelton K.H., Nemeroff C.B., Owens M.J. The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther. 2003; 305 (2): 434–9. https://doi.org/10.1124/jpet.102.045419.

65. Ebstein R.P., Hermoni M., Belmaker R.H. The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J Pharmacol Exp Ther. 1980; 213 (1): 161–7.

66. van Enkhuizen J., Milienne-Petiot M., Geyer M.A., Young J.W. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology. 2015; 232 (18): 3455–67. https://doi.org/10.1007/s00213-015-4000-4.

67. Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology. 2005; 30 (6): 1064–75. https://doi.org/10.1038/sj.npp.1300671.

68. Castro L., Athanazio R., Barbetta M., et al. Central 5-HT2B/2C and 5-HT3 receptor stimulation decreases salt intake in sodiumdepleted rats. Brain Res. 2003; 981 (1-2): 151–9. https://doi.org/10.1016/s0006-8993(03)03015-4.

69. Basselin M., Chang L., Seemann R., et al. Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology. 2005; 30 (3): 461–72. https://doi.org/10.1038/sj.npp.1300611.

70. Basselin M., Chang L., Bell J.M., Rapoport S.I. Chronic lithium chloride administration attenuates brain NMDA receptorinitiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology. 2006; 31 (8): 1659–74. https://doi.org/10.1038/sj.npp.1300920.

71. Marx C.E., Yuan P., Kilts J.D., et al. Neuroactive steroids, mood stabilizers, and neuroplasticity: alterations following lithium and changes in Bcl-2 knockout mice. Int J Neuropsychopharmacol. 2008; 11 (4): 547–52. https://doi.org/10.1017/S1461145708008444.

72. Banerji T.K., Parkening T.A., Collins T.J., Rassoli A. Lithium-induced changes in the plasma and pituitary levels of luteinizing hormone, follicle stimulating hormone and prolactin in rats. Life Sci. 1983; 33 (16): 1621–7. https://doi.org/10.1016/0024-3205(83)90704-x.

73. Cimarosti H., Rodnight R., Tavares A., et al. An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett. 2001; 315 (1-2): 33–6. https://doi.org/10.1016/s03043940(01)02310-2.

74. Walz J.C., Frey B.N., Andreazza A.C., et al. Effects of lithium and valproate on serum and hippocampal neurotrophin-3 levels in an animal model of mania. J Psychiatr Res. 2008; 42 (5): 416–21. https://doi.org/10.1016/j.jpsychires.2007.03.005.

75. Hashimoto R., Takei N., Shimazu K., et al. Lithium induces brainderived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002; 43 (7): 1173–9. https://doi.org/10.1016/s0028-3908(02)00217-4.

76. Torshin I.Y., Gromova O.A., Kovrazhkina E.A., et al. Data mining of the interactions between the trace element composition of the blood and the state of the patients with the lateral amyotrophic sclerosis shown lowered levels of lithium and selenium. Consilium Medicum. 2017; 19 (9): 88–96 (in Russ.).]

77. Mørk A. Actions of lithium on the cyclic AMP signalling system in various regions of the brain – possible relations to its psychotropic actions. A study on the adenylate cyclase in rat cerebral cortex, corpus striatum and hippocampus. Pharmacol Toxicol. 1993; 73 (Suppl 3): 1–47. https://doi.org/10.1111/j.1600-0773.1993.tb01704.x.

78. Andersen P.H., Klysner R., Geisler A. Cyclic AMP phosphodiesterase activity in rat brain following chronic treatment with lithium, imipramine, reserpine, and combinations of lithium with imipramine or reserpine. Acta Pharmacol Toxicol. 1983; 53 (4): 337–43. https://doi.org/10.1111/j.1600-0773.1983.tb03432.x.

79. Wang J.F., Asghari V., Rockel C., Young L.T. Cyclic AMP responsive element binding protein phosphorylation and DNA binding is decreased by chronic lithium but not valproate treatment of SHSY5Y neuroblastoma cells. Neuroscience. 1999; 91 (2): 771–6. https://doi.org/10.1016/s0306-4522(98)00627-7.

80. Mann L., Heldman E., Bersudsky Y., et al. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disord. 2009; 11 (8): 885–96. https://doi.org/10.1111/j.13995618.2009.00762.x.

81. Sarkar S., Floto R.A., Berger Z., et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005; 170 (7): 1101–11. https://doi.org/10.1083/jcb.200504035.

82. Damri O., Sade Y., Toker L., et al. Molecular effects of lithium are partially mimicked by inositol-monophosphatase (IMPA)1 knockout mice in a brain region-dependent manner. Eur Neuropsychopharmacol. 2015; 25 (3): 425–34. https://doi.org/10.1016/j.euroneuro.2014.06.012.

83. O'Donnell T., Rotzinger S., Nakashima T.T., et al. Chronic lithium and sodium valproate both decrease the concentration of myoinositol and increase the concentration of inositol monophosphates in rat brain. Eur Neuropsychopharmacol. 2003; 13 (3): 199–207. https://doi.org/10.1016/s0006-8993(00)02797-9.

84. Sasaki T., Han F., Shioda N., et al. Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model. Brain Res. 2006; 1108 (1): 98–106. https://doi.org/10.1016/j.brainres.2006.06.009.

85. Sinha D., Wang Z., Ruchalski K.L., et al. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol. 2005; 288 (4): F703–13. https://doi.org/10.1152/ajprenal.00189.2004.

86. Silva A.K., Yi H., Hayes S.H., et al. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical Wnt signaling pathway. Mol Vis. 2010; 16: 36–45.

87. Shan T., Zhou C., Yang R., et al. Lithium chloride promotes the odontoblast differentiation of hair follicle neural crest cells by activating Wnt/beta-catenin signaling. Cell Biol Int. 2015; 39 (1): 35–43. https://doi.org/10.1002/cbin.10340.

88. Zhu Z., Yin J., Guan J., et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3betadependent beta-catenin/Wnt pathway activation. FEBS J. 2014; 281 (23): 5371–89. https://doi.org/10.1111/febs.13081.

89. Peng Z., Ji Z., Mei F., et al. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway. PLoS One. 2013; 8 (4): e61457. https://doi.org/10.1371/journal.pone.0061457.

90. Pronin A.V., Gromova O.A., Sardaryan I.S., et al. Adaptogenic and neuroprotective effects of lithium ascorbate. S.S. Korsakov Journal of Neurology and Psychiatry. 2016; 116 (12): 86–91 (in Russ.). https://doi.org/10.17116/jnevro201611612186-91.]

91. Pronin A.V., Gromova O.A., Torshin I.Y., et al. Neuroprotective properties of lithium salts during glutamate-induced stress. Nevrologiya, neiropsikhiatriya, psikhosomatika / Neurology, Neuropsychiatry, Psychosomatics. 2017; 9 (3): 111–9 (in Russ.). https://doi.org/10.14412/2074-2711-2017-3-111-119.]

92. Pepelyaev E.A., Semenov V.A., Torshin I.Yu., Gromova O.A. Effects of lithium ascorbate in middle-aged patients with stenosing atherosclerosis of brachiocephalic arteries. Pharmacokinetics and Pharmacodynamics. 2018; 4: 42–9 (in Russ.). https://doi.org/10.24411/2587-7836-2018-10029.]

93. Pacholko A.G., Bekar L.K. Different pharmacokinetics of lithium orotate inform why it is more potent, effective, and less toxic than lithium carbonate in a mouse model of mania. J Psychiatr Res. 2023; 164: 192–201. https://doi.org/10.1016/j.jpsychires.2023.06.012.

94. Torshin I.Y., Gromova O.A., Ostrenko K.S., et al. Lithium ascorbate as a promising neuroprotector: fundamental and experimental studies of an organic lithium salt. Molecules. 2022; 27 (7): 2253. https://doi.org/10.3390/molecules27072253.

95. Pronin A.V., Gromova O.A., Torshin I.J., et al. Preclinical study the pharmacokinetics of lithium ascorbate. Pharmacokinetics and Pharmacodynamics. 2016; 2: 18–25 (in Russ.).]

96. Пронин А.В., Громова О.А., Торшин И.Ю., Гришина Т.Р. Динамика распределения лития в различных тканях после перорального приёма цитрата лития у крыс. Фармакокинетика и фармакодинамика. 2017; 4: 16–23. [Pronin A.V., Gromova O.A., Torshin I.U., Grishina T.R. Dynamics of distribution of lithium in different tissues after oral administration of lithium citrate in rats. Pharmacokinetics and Pharmacodynamics. 2017; 4: 16–23 (in Russ.).]

97. Gromova O.A., Torshin I.Iu., Gogoleva I.V., et al. Pharmacokinetic and pharmacodynamic synergism between neuropeptides and lithium in the neurotrophic and neuroprotective action of cerebrolysin. S.S. Korsakov Journal of Neurology and Psychiatry. 2015; 115 (3): 65–72 (in Russ.). https://doi.org/10.17116/jnevro20151153165-72.]

98. Torshin I.Y., Gromova O.A., Mayorova L.A., Volkov A.Y. Targeted proteins involved in the neuroprotective effects of lithium citrate. Nevrologiya, neiropsikhiatriya, psikhosomatika / Neurology, Neuropsychiatry, Psychosomatics. 2017; 9 (1): 78–83 (in Russ.).]

99. Torshin I.Yu., Gromova O.A., Lazebnik L.B. Chemomicrobiome analysis of lithium ascorbate and other organic lithium salts. Experimental and Clinical Gastroenterology. 2022; 9: 95–104 (in Russ.). https://doi.org/10.31146/1682-8658-ecg-205-9-95-104.]

100. Torshin I.Yu., Sardaryan I.S., Gromova O.A., et al. Chemoreactome modeling the effects of anions of lithium salts ascorbate, nicotinate, hydroxybutyrate komenata and lithium carbonate. Pharmacokinetics and Pharmacodynamics. 2016; 3: 47–57 (in Russ.).]


Review

For citations:


Torshin I.Yu., Gromova O.A., Rastashansky V.V., Garanin A.A. A systematic review of lithium biology and pharmacology and toxicological evaluation of new organic lithium salts. Epilepsy and paroxysmal conditions. 2024;16(3):266–280. (In Russ.) https://doi.org/10.17749/2077-8333/epi.par.con.2024.196

Views: 631


ISSN 2077-8333 (Print)
ISSN 2311-4088 (Online)